Penetration of weeds into the herbaceous understorey and soil seed bank of a Turkey oak-sessile oak forest in Hungary


Intensification of land use in the last few decades resulted in an increased rate of fragmentation of natural forest habitats. With decreased patch size but increased total borderline length the influence of the surroundings also increased. The extent of influence is especially crucial where the forest stands are adjacent to agricultural lands. We studied the vegetation (cover) and seed bank (soil samples, seedling emergence) along adjacent stands of an abandoned vineyard and edge and interior of an oak forest community (Quercetum petraeae-cerris) widespread in Central-Europe, using five transects (16 m2 plots along each transect). We asked the following questions: (i) How do vegetation and seed bank composition differ between the vineyard and forest interior and (ii) which weeds are able to penetrate into the forest herbaceous understorey vegetation and seed banks from the vineyard? In total, 15 phanaerophytes and 147 herbs were detected. Negatively associated with canopy shading, herb cover proved the lowest in the forest inferior. Few weeds and other ruderals recorded in vineyard penetrated into the forest interior. Mean seed density decreased one order of magnitude from the vineyard to the forest interior (from 20,831 to 2,159 seed/m2). The seed banks of the abandoned vineyard and edge and forest interior were dominated by ruderals, but decreasing proportion of weeds was detected from the vineyard to the forest interior. Characteristic forest herbs possessed at most sparse seed banks. Our results suggest that high canopy cover mitigates the negative impact of surrounding weedy vegetation on the forest herb layer. Therefore, the effect of surroundings is detectable mostly in the seed banks. We can assume that the formation of an increased ruderal herb cover can be foreseen if canopy opens, because the local propagule sources of forest species are missing from vegetation and soil seed banks.



Social Behaviour Types




ruderal competitors


adventive competitors


short-lived weeds


disturbance tolerants








natural pioneers


Non-metric Multidimensional Scaling


seed bank density


mean cover


  1. Aide, T.M. and J. Cavelier. 1994. Barriers to lowland tropical forest restoration in the Sierra Nevada De Santa Marta, Colombia. Restor. Ecol. 2: 219–229.

    Article  Google Scholar 

  2. Andersen, M.C. 1993. Diaspore morphology and seed dispersal in several wind-dispersed Asteraceae. Am. J. Bot. 80: 487–492.

    Article  Google Scholar 

  3. Benítez-Malvido, J. and M. Martínez-Ramos. 2003. Impact of forest fragmentation on understory plant species richness in Amazonia. Conserv. Biol. 17: 389–400.

    Article  Google Scholar 

  4. Borhidi, A. 1995. Social behaviour types, their naturalness and relative ecological indicator values of the higher plants of the Hungarian Flora. Acta Bot. Hung. 39: 97–182.

    Google Scholar 

  5. Borhidi, A. 2003. Magyarország növénytársulásai [Plant associations of Hungary]. Akadémiai Kiadó, Budapest (in Hungarian).

    Google Scholar 

  6. Bossuyt, B. and H. Hermy. 2001. Influence of land use history on seed banks in European temperate forest ecosystems: a review. Ecography 24: 225–238.

    Article  Google Scholar 

  7. Bossuyt B., M. Heyn and M. Hermy. 2002. Seed bank and vegetation composition of forest stands of varying age in central Belgium: consequences for regeneration of ancient forest vegetation. Plant Ecol. 162: 33–48.

    Article  Google Scholar 

  8. Bossuyt, B. and O. Honnay. 2008. Can the seed bank be used for ecological restoration? An overview of seedbank characteristics in European communities. J. Veg. Sci. 19: 875–884.

    Article  Google Scholar 

  9. Brothers, T.S. and A. Springarn. 1992. Forest fragmentation and alien plant invasion of central Indiana old-growth forests, Conserv. Biol. 6: 91–100.

  10. Cadenasso M.L., M.M. Traynor and S.T.A. Pickett 1997. Functional location of forest edges: gradients of multiple physical factors. Can. J. Forest Res. 27: 774–782.

    Article  Google Scholar 

  11. Cadenasso, M.L. and S.T.A. Pickett 2001. Effect of edge structure on the flux of species into forest interiors. Conserv. Biol. 15: 91–97.

    Article  Google Scholar 

  12. Camargo, J.L.C and V. Kapos. 1995. Complex edge effects on soil moisture and microclimate in central Amazonian forest. J. Trop. Ecol. 11: 205–221.

    Article  Google Scholar 

  13. Cook, R. 1980. The biology of seeds in the soil. In: Solbrig, O.T. (ed.), Demography and Evolution of Plant Populations. University of California Press, Berkeley. pp. 107–129.

  14. Csapody, V. 1968. Keimlingsbestimmungsbuch der Dicotyledonen. Akadémiai Kiadó, Budapest.

    Google Scholar 

  15. Cavers, P.B. and D.L. Benoit. 1989. Seed banks in arable land. In: Leck, M.A., T.V. Parker and R.L. Simpson (eds.), Ecology of Soil Seed Banks. Academic Press, London. pp. 309–328.

  16. Csontos, P., A. Horánszky, T. Kalapos and L. Lőkős. 1996a. Seed bank of Pinus nigra plantations in dolomite rock grassland habitats, and its implications for restoring grassland vegetation. Ann. Hist.-Nat. Mus. Natn. Hung. 88: 69–77.

    Google Scholar 

  17. Csontos, P. 1996b. Az aljnövényzet változásai cseres-tölgyes erdõk regenerációs szukcessziójában. (Regeneration succession of sessile oak - Turkey oak forests: Processes in the herb layer). Scientia Kiadó, Budapest. (in Hungarian)

  18. Csontos, P., J. Tamás and T. Kalapos 1997. Soil seed banks and vegetation recovery on dolomite hills in Hungary. Acta Bot. Hung. 40: 35–43.

    Google Scholar 

  19. Csontos, P. 2001. A természetes magbank kutatásának módszerei. (Methods of studying natural seed banks). Scientia Kiadó, Budapest. (in Hungarian)

  20. Csontos P. 2006. A magbank-ökológia alapjai, a hazai flóra magökológiai vizsgálata. [Fundamentals of seed bank ecology, the seed ecological study of the Hungarian flora] D.Sc. Dissertation, MTA Kézirattár, Budapest. (in Hungarian)

  21. Csontos, P. 2007. Seed banks: ecological definitions and sampling considerations. Community Ecol. 8: 75–85.

    Article  Google Scholar 

  22. Csontos, P. 2010a. A természetes magbank, valamint a hazai flóra magökológiai vizsgálatának új eredményei. [Some new results improving the knowledge of the natural soil seed banks of the Hungarian flora] Kanitzia 17: 77–110.

  23. Csontos, P. 2010b. Light ecology and regeneration on clearings of Turkey oak-sessile oak forests in the Visegrád Mountains, Hungary. Acta Bot. Hung. 52: 265–286.

    Article  Google Scholar 

  24. Devlaeminck, R., B. Bossuyt and M. Hermy. 2005. Inflow of seeds through the forest edge: evidence from seed bank and vegetation patterns. Plant. Ecol. 176: 1–17.

    Article  Google Scholar 

  25. Didham, R.K. and J.H. Lawton 1999. Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31: 17–30.

    Google Scholar 

  26. Eriksson, O., S.A.O. Cousins and H.H. Bruun. 2002. Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. J. Veg. Sci. 13: 743–748.

    Article  Google Scholar 

  27. Gehlhausen, S.M., M.W. Schwartz and C.K. Augspurger. 2000. Vegetation and microclimatic edge effects in two mixed-mesophytic forests fragments. Plant. Ecol. 147: 21–35.

    Article  Google Scholar 

  28. Grime, J.P. 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester.

    Google Scholar 

  29. Hall, J.B. and M.D. Swaine. 1980. Seed stocks in Ghanaian forest soils. Biotropica 12: 256–263.

    Article  Google Scholar 

  30. Halpern, C.B., S.A. Evans and S. Nielson. 1999. Soil seed banks in young closed-canopy forests of the Olympic Peninsula, Washington: potential contributions to understory reinitiation. Can. J. Bot. 77: 922–935.

    Google Scholar 

  31. Harper, J.L. 1977. Population Biology of Plants. London, Academic Press.

    Google Scholar 

  32. Honnay, O., K. Verheyen and M. Hermy. 2002. Permeability of ancient forest edges for weedy plant species invasion. Forest Ecol. Manag. 161: 109–122.

    Article  Google Scholar 

  33. Jacquemyn, H., J. Butaye and H. Hermy. 2001. Forest plant species richness in small, fragmented mixed deciduous forest patches: role of area, time and dispersal limitation. J. Biogeogr. 28: 1–12.

    Article  Google Scholar 

  34. Jakucs, P. 1985. Results of „Síkfõkút Project”. Akadémiai Kiadó, Budapest.

    Google Scholar 

  35. Kjellsson, G. 1992. Seed banks in Danish deciduous forests: species composition, seed influx and distribution pattern in soil. Ecography 15: 86–100.

    Article  Google Scholar 

  36. Koncz, G., Papp, M., Török, P., Kotroczó, Zs., Krakomperger, Zs., Matus, G. and B. Tóthmérész. 2010. The role of seed bank in the dynamics of understory in a turkey-sessile oak forest in Hungary. Acta Biol Hung 61(Suppl.): 109–119.

  37. Kotroczó, Zs., I. Fekete, J.A. Tóth, B. Tóthmérész and S. Balázsy. 2008. Effect of leaf- and root-litter manipulation for carbon-dioxide efflux in forest soil. Cereal Res. Commun. 36 (Suppl.): 663–666.

  38. Krakomperger, Zs., J.A. Tóth, Cs. Varga and B. Tóthmérész. 2008. The effect of litter input on soil enzyme activity in an oak forest. Cereal Res. Commun. 36 (Suppl.): 322–326.

  39. Laurence, W.F. and E. Yensen. 1991. Predicting the impacts of edge effects in fragmented habitats. Biol. Conserv. 55: 77–92.

    Article  Google Scholar 

  40. Leckie, S., M. Vellend, G. Bell, M.J. Waterway and M.J. Lechowicz. 2000. The seed bank in an old-growth, temperate deciduous forest. Can. J. Bot. 78: 181–192.

    Google Scholar 

  41. Legendre, P. and L. Legendre 1998. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  42. Lin, L. and M. Cao. 2009. Edge effects on soil seed banks and understory vegetation in subtropical and tropical forests in Yunnan, SW China. Forest Ecol. Manag. 257: 1344–1352.

    Article  Google Scholar 

  43. Mitlacher, K., P. Poschlod, E. Rosén and J.P. Bakker. 2002. Restoration of wooded meadows – a comparative analysis along a chronosequence on Öland Sweden. J. Veg. Sci. 5: 63–73.

    Google Scholar 

  44. Oosterhoorn, M. and M. Kappelle. 2000. Vegetation structure and composition along an interior-edge-exterior gradient in a Costa Rican montane cloud forest. Forest Ecol. Manag. 126: 291–307.

    Article  Google Scholar 

  45. Palik, B.J. and P.G. Murphy. 1990. Disturbance versus edge effects in sugar-maple/beech forest fragments. Forest Ecol. Manag. 32: 187–202.

    Article  Google Scholar 

  46. Pickett, S.T.A. and M.J. McDonell. 1989. Seed bank dynamics in temperate deciduous forest. In: Leck, M.A., V.T. Parker and R.L. Simpson (eds.), Ecology of Soil Seed Banks. Academic Press, London. pp. 123–147.

  47. Priestly, D.A. 1986. Seed Aging: Implications for Seed Storage and Persistence in the Soil. Cornell University Press, Ithaca.

    Google Scholar 

  48. R Development Core Team 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL

  49. Ranney, J.W., M.C. Bruner and J.B. Levenson. 1981. The importance of edge in the structure and dynamics of forest islands. In: R.L. Burgess and D.M. Sharpe (eds.), Forest Island Dynamics in Man Dominated Landscapes. Springer , New York. pp. 67–95.

  50. Simon, T. 2000. A magyarországi edényes flóra határozója [Vascular flora of Hungary]. Nemzeti Tankönyvkiadó, Budapest. (in Hungarian)

  51. Thompson, K., J. P. Bakker, and R. M. Bekker. 1997. Soil Seed Banks of North West Europe: Methodology, Density and Longevity. Cambridge University Press, Cambridge.

    Google Scholar 

  52. ter Heerdt, G.N.J., G.L. Verweij, R.M. Bekker and J.P. Bakker. 1996. An improved method for seed bank analysis: seedling emergence after removing the soil by sieving. Funct. Ecol. 10: 144–151.

    Article  Google Scholar 

  53. Wales, B.A. 1972. Vegetation analysis of north and south edges in a mature oak-hickory forest. Ecol. Monogr. 42: 451–471.

    Article  Google Scholar 

  54. Warr, J.S., M. Kent and K. Thompson. 1994. Seed bank composition and variability in five woodlands in southwest England. J. Biogeogr. 21: 151–168.

    Article  Google Scholar 

  55. Williams-Linera, G. 1990. Vegetation structure and environmental conditions of forest edges in Panama. J. Ecol. 78: 356–373.

    Article  Google Scholar 

  56. Vlahos, S. and D.T. Bell 1986. Soil seed-bank components of the northern jarrah forest of Western Australia. Aust. J. Ecol. 11: 171–179.

    Article  Google Scholar 

  57. Zar, J.H. 1999. Biostatistical Analysis. Prentice Hall, Upper Saddle River.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. Török.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Koncz, G., Török, P., Papp, M. et al. Penetration of weeds into the herbaceous understorey and soil seed bank of a Turkey oak-sessile oak forest in Hungary. COMMUNITY ECOLOGY 12, 227–233 (2011).

Download citation


  • Field margin
  • Forest herbs
  • Invasion
  • Plant strategy
  • Ruderal species


  • Simon (2000)