Community Ecology

, Volume 12, Issue 1, pp 23–30 | Cite as

Disturbance, regeneration and the spatial pattern of tree species in Azorean mountain forests

  • R. B. EliasEmail author
  • E. Dias
  • F. Pereira


Disturbance related vegetation dynamics differs with Azorean mountain forest communities, where each tree species has its own regeneration strategy. Knowledge of the spatial distribution of tree species may help us to generate hypotheses on the relation between disturbance, regeneration and spatial organization and on the possible underlying ecological mechanisms. In view of this, we asked the following questions regarding the spatial pattern of tree species: What is the spatial distribution of saplings and adults? Are there any spatial associations or exclusions between saplings and adults of the same and different species? To what extent do the disturbance regimes and regeneration strategies of each species explain its spatial pattern? Six 225 m (15×15 m) plots were placed in each of three different forest types in three Islands (Pico, Terceira and Flores). Patterns of tree individuals were analysed through Morisita’s index of dispersion (Iδ) and Iwao ω index. With the exception of Laurus azorica and Frangula azorica. saplings are in most cases aggregated. Erica azorica is the only species whose adults are aggregated at short distances. Spatial distribution is mostly random for the other species. At short distances, few strong associations or exclusions were detected. Pioneer species such as Juniperus brevifolia tend to be more aggregated due to their dependence on gaps to germinate and recruit new individuals. In fact, increasing disturbance and gap size enhances the regeneration of J. brevifolia. Primary species tend to be randomly distributed in part due to their strategy of forming seedling-sapling banks. Spatial pattern of tree species is largely explained by disturbance regimes and regeneration strategies of each species. However, factors such as habitat related patchiness, competition and dispersion limitation may also explain many of the observed patterns.


Competition Elfin cloud forests Juniperus brevifolia Regeneration Spatial distribution 





Morro Alto


Pico Alto 1


Pico Alto 2


Pico Alto 3


Santa Bárbara


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anand, M. and A. Langille. 2010. A model-based method for estimating effective dispersal distance in tropical plant populations. Theor. Popul. Biol. 77: 219–226CrossRefGoogle Scholar
  2. Arévalo, J. R. 1998. Organización espacial y temporal de la Lauris-silva de Anaga – Tenerife, Islas Canarias. Ph.D. Dissertation. Universidade de La Laguna, Departamento de Parasitologia, Ecologia e Genética. La Laguna. Canary Islands.Google Scholar
  3. Arévalo, J. R. and J. M. Fernández-Palacios. 2003. Spatial patterns of trees and juveniles in a Laurel forest of Tenerife, Canary Islands. Plant Ecol. 165: 1–10.Google Scholar
  4. Bell, T., R. P. Freckleton and O.T. Lewis. 2006. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. 9: 569–574.CrossRefGoogle Scholar
  5. Boll, T., J. C. Svenning, J. Vormisto, S. Normand, C. Grández and H. Balslev. 2005. Spatial distribution and environmental preferences of the piassaba palm Aphandra natalia (Arecaceae) along the Pastaza and Urituyacu rivers in Peru. Forest Ecol. Manage. 213: 175–183.CrossRefGoogle Scholar
  6. Brokaw, N. V. L. 1982. The definition of treefall gap and its effect on measures of forest dynamics. Biotropica 14: 158–160.CrossRefGoogle Scholar
  7. Busing, R. T. 1998. Composition, structure and diversity of cove forest stands in the Great Smoky Mountains: a patch dynamics perspective. J. Veg. Sci. 9: 881–890.CrossRefGoogle Scholar
  8. Clark, D. A. and D. B. Clark. 1984. Spacing dynamics of a tropical rain forest tree: evaluation of the Janzen-Connell model. Am. Nat. 124: 769–788.CrossRefGoogle Scholar
  9. Condit, R., P. S. Ashton, P. Baker, S. Bunyavejchewin, S. Guna-tilleke, N. Gunatilleke, S. P. Hubbell, R. B. Foster, A. Itoh, J. V. LaFrankie, H. Seng-Lee, E. Losos, N. Manokaran, R. Sukumar and T. Yamakura. 2000. Spatial patterns in the distribution of tropical tree species. Science 288: 1414–1418.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Crawley, M. J. 1997. The structure of plant communities. In: M. J. Crawley (ed.), Plant Ecology, 2nd edition. Blackwell, Oxford. pp. 475–531.Google Scholar
  11. Dias, E. 1996. Vegetação natural dos Açores. Ecologia e sintax-onomia das florestas naturais. Ph.D. Dissertation. Universidade dos Açores. Angra do Heroísmo.Google Scholar
  12. Dias, E., R. B. Elias and V. Nunes. 2004. Vegetation mapping and nature conservation: a case study in Terceira Island (Azores). Biodivers. Conserv. 13: 1519–1539.CrossRefGoogle Scholar
  13. Elias, R. B. 2007. Ecologia das florestas de Juniperus dos Açores. Ph.D. Dissertation, Azores University, Angra do Heroísmo.Google Scholar
  14. Elias, R. B. and E. Dias. 2004. Primary succession on lava domes on Terceira (Azores). J. Veg. Sci. 15: 331–338.CrossRefGoogle Scholar
  15. Elias, R.B. and Dias E. 2009a. Gap dynamics and regeneration strategies in Juniperus-Laurus forests of the Azores Islands. Plant Ecol. 200: 179–189.CrossRefGoogle Scholar
  16. Elias, R.B. and Dias E. 2009b. Cyclic patch dynamics in a Macarone-sian island forest. Community Ecol. 10: 25–34.CrossRefGoogle Scholar
  17. Elias, R.B. & Dias E. 2009c. Effects of landslides on the mountain vegetation of Flores Island, Azores. J. Veg. Sci. 20: 706–717.CrossRefGoogle Scholar
  18. Fangliang, H., P. Legendre and J. V. La Frankie. 1997. Distribution patterns of tree species in a Malaysian tropical rain forest. J. Veg. Sci. 8: 105–114.CrossRefGoogle Scholar
  19. França, Z., J. V. Cruz, J. C. Nunes and V. H. Forjaz 2003. Geologia dos Açores: uma perspectiva actual. Açoreana 10: 11–140.Google Scholar
  20. Gratzer, G. and P. B. Rai. 2004. Density-dependent mortality versus spatial segregation in early life stages of Abies densa and Rho- dodendron hodgsonii in Central Bhutan. Forest Ecol. Manage. 192: 143–159.CrossRefGoogle Scholar
  21. Grubb, P. J. 1977. The maintenance of species richness in plant communities. The importance of the regeneration niche. Biol. Rev. Camb. Philos. Soc. 52: 107–145.CrossRefGoogle Scholar
  22. Haase, P. 1995. Spatial pattern analysis in ecology based on Ripley’s K-function: Introduction and methods of edge correction.J. Veg. Sci. 6: 575–582.CrossRefGoogle Scholar
  23. Hardy, O. J. and B. Sonké. 2004. Spatial pattern analysis of tree species distribution in a tropical rain forest of Cameroon: assessing the role of limited dispersal and niche differentiation. Forest Ecol. Manage. 197: 191–202.CrossRefGoogle Scholar
  24. Hoshino, D., N. Nishimura and S. Yamamoto. 2001. Age, size structure and spatial pattern of major tree species in an old-growth Chamaecyparis obtusa forest, Central Japan. Forest Ecol. Manage. 152: 31–43.CrossRefGoogle Scholar
  25. Ishikawa, Y., P. V. Krestov and K. Namikawa. 1999. Disturbance history and tree establishment in old-growth Pinus koraiensis-hardwood forests in the Russian Far East. J. Veg. Sci. 10: 439– 448.CrossRefGoogle Scholar
  26. Leithead, M. D., M. Anand andL. Deeth. 2009.A synthetic approach for analyzing tropical tree spatial patterns through time. Community Ecol. 10: 45–52.CrossRefGoogle Scholar
  27. Li, L., H. Zhongliang, W. Ye, H. Cao, S. Wei, Z. Wang, J. Lian, I. Sun, K. Ma and F. He. 2009. Spatial distributions of tree species in a subtropical forest of China. Oikos 118: 495–502.CrossRefGoogle Scholar
  28. Manabe, T., N. Nishimura, M.Miura and S. Yamamoto. 2000. Population structure and spatial patterns for trees in a temperate old-growth evergreen broad-leaved forest in Japan. Plant Ecol. 151: 181–197.CrossRefGoogle Scholar
  29. Martinez, I., T. Wiegand, F. González-Taboada and J. R. Obeso. 2010. Spatial associations among tree species in a temperate forest community in North-western Spain. Forest Ecol. Manage. 260: 456–465.CrossRefGoogle Scholar
  30. Matsuda, Y. and N. Hijii. 1998. Spatiotemporal distribution of fruit bodies of ectomycorrhizal fungi in an Abies firma forest. Mycor-rhiza 8: 131–138.CrossRefGoogle Scholar
  31. McDonald, R. I., R. K. Peet and D. L. Urban. 2003. Spatial pattern of Quercus regeneration limitation and Acer rubrum invasion in a Piedmont forest. J. Veg. Sci. 14: 441–450.CrossRefGoogle Scholar
  32. Miyadokoro, T., N. Nishimura and S. Yamamoto. 2003. Population structure and spatial patterns of major trees in a subalpine old-growth coniferous forest, central Japan. Forest Ecol. Manage. 182: 259–272.CrossRefGoogle Scholar
  33. Morisita, M. 1959. Measuring the dispersion of individuals and analysis of the distributional patterns. Memoirs of the Faculty of Science of Kyushu University, Series E 2 (4): 215–234.Google Scholar
  34. Rivas-Martínez, S., T. Díaz, F. Fernández-González, J. Izco, J. Loidi, M. Lousã and A. Penas. 2002. Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Part II. Itinera Geobot. 15(2): 433–922.Google Scholar
  35. Rumeu B., M. Nogales, R. B. Elias, D. P. Padilla, T. Resendes, A. F. Rodríguez and E. Dias. 2009. Contrasting phenology and female cone characteristics of the two Macaronesian island endemic cedars (Juniperus cedrus and J. brevifolia). Eur. J. Forest Res. 128: 567–574.CrossRefGoogle Scholar
  36. Self, S. 1976. The recent volcanology of Terceira, Azores. J. Geol. Society London 132: 645–666.CrossRefGoogle Scholar
  37. Souza, A. F. and F. R. Martins. 2002. Spatial distribution of an undergrowth palm in fragments of the Brazilian Atlantic Forest. Plant Ecol. 164: 141–155.CrossRefGoogle Scholar
  38. Szwagrzyk, J. and M. Czerwczak. 1993. Spatial patterns of trees in natural forests of East-Central Europe. J. Veg. Sci. 4: 469–476.CrossRefGoogle Scholar
  39. Takahashi, K., K. Homma, V. P. Vetrova, S. Florenzev and T. Hara. 2001. Stand structure and regeneration in a Kamchatka mixed boreal forest. J. Veg. Sci. 12: 627–634.CrossRefGoogle Scholar
  40. Tanouchi, H. and S. Yamamoto. 1995. Structure and regeneration of canopy species in an old-growth evergreen broad-leaved forest in Aya district, southwestern Japan. Vegetatio 117: 51–60.CrossRefGoogle Scholar
  41. Taylor, A. H. and C. B. Halpern. 1991. The structure and dynamics of Abies magnifica forests in the southern Cascade Range, USA. J. Veg. Sci. 2: 189–200.CrossRefGoogle Scholar
  42. Taylor, A. H., S. W. Jang, L. J. Zhao, C. P. Liang, C. J. Miao and J. Huang. 2006. Regeneration patterns and tree species coexistence in old-growth Abies-Picea forests in southwestern China. Forest Ecol. Manage. 223: 303–317.CrossRefGoogle Scholar
  43. van der Meer, P. J., F. J. Sterck and F. Bongers. 1998. Tree seedling performance in canopy gaps in a tropical rain forest at Noura-gues, French Guiana. J. Trop. Ecol. 14: 119–137.CrossRefGoogle Scholar
  44. Wolf, A. 2005. Fifty year record of change in tree spatial patterns within a mixed deciduous forest. Forest Ecol. Manage. 215: 212–223.CrossRefGoogle Scholar
  45. Yu, H.,T. Wiegand, X. Yang and L. Ci. 2009. The impact of fire and density-dependent mortality on the spatial patterns of a pine forest in the Hulun Buir sandland, Inner Mongolia, China. Forest Ecol. Manage. 257: 2098–2107.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Azorean Biodiversity Group (CITA-A), Departamento de Cięncias AgráriasUniversidade dos AçoresAngra do Heroísmo, AzoresPortugal
  2. 2.Global Changes, Climate and Meteorology Centre (CITA-A)Universidade dos AçoresAngra do Heroísmo, AzoresPortugal

Personalised recommendations