Is chorological symmetry observable within the forest steppe biome in Hungary? – A demonstrative analysis of floristic data

Abstract

Biome interfaces are expected to exhibit chorological symmetry, i.e., decreasing trends in the number of species associated with each of the two neighbouring biomes as we progress from one into the other. Our aim was to test for such a pattern within the forest steppe biome, which is a transition zone in itself between the temperate deciduous forests and the steppe biome. Presence of chorological symmetry would provide indirect evidence for the prehuman presence of zonal steppes in the Carpathian basin. We also whished to provide an example with this analysis for drawing biogeographical conclusions based on quantitative species occurrence data, an information source hitherto neglected in Central Europe. Occurrence patterns of forest and steppe species were analysed at the Duna-Tisza köze (Danube-Tisza Interfluve) by the traditional qualitative biogeographic method and by hierarchical classification of predicted spatial pattern based on Generalized Linear Models with logistic link function. Species presences were explained by variables describing spatial orientation. In this approach, an out-group of sand grassland species was also added to characetrise the discrimination ability of the approach. The quantitative method discriminated the out group of sand grassland species, providing evidence of its suitability for our purpose. The results of the quantitative investigations were also in accordance with the qualitative evaluation. Surprisingly, forest and steppe species showed similar distributional patterns, i.e., no chorological symmetry was discernable. The quantitative biogeographic approach unveiled important evidence for deciding about the potential presence of zonal steppes in the Carpathian basin. Although the observed similarity of the distribution of forest and steppe species may have multiple reasons, the major cause of the lack of chorological symmetry is most probably the lack of zonal steppe South of the forest steppe biome in the Carpathian basin. Additional explanations include land use pattern and the mountain belt around the basin acting as a refugium in the ice ages.

References

  1. Barbaric, A.I., D.N. Dobrochaeva and O.N. Dubovik. 1986. The Chorology of the Flora of Ukraine. Naukova Dumka, Kiew. (In Ukrainian).

    Google Scholar 

  2. Barina, Z. 2006. Flora of the Gerecse Mountains. Duna-Ipoly Nemzeti Park. Magyar Természettudományi Múzeum, Budapest. (in Hungarian).

    Google Scholar 

  3. Bauer, N, L. Lőkös and B. Papp. 2008. Distribution and habitats of Cardaminopsis petraea in Hungary. Stud. Bot. Hung. 39: 113–138.

    Google Scholar 

  4. Berg, L. 1958. Die geographischen Zonen der Sowjetunion I. Teubner Verlag, Leipzig.

    Google Scholar 

  5. Biró, M., A. Révész, Zs. Molnár, F. Horváth and B. Czucz. 2008. Regional habitat pattern of the Duna-Tisza köze in Hungary II. The sand, the steppe and the riverine vegetation: degraded and ruined habitats. Acta Bot. Hung. 50: 21–62.

    Article  Google Scholar 

  6. Bohn, U., R. Neuhäusl, G. Gollub, C. Hettwer, Z. Neuhäuslová, Th. Raus, H. Shlüter and H. Weber. 2000/2003. Karte der natürlichen Vegetation Europas / Map of the Natural Vegetation of Europe. Massstab/Scale 1: 2 500 000. Landwirtschaftsverlag, Münster.

    Google Scholar 

  7. Borhidi, A. 1993. Characteristics of the climate of the Danube-Tisza Mid-region. In: J. Szujkó-Lacza and D. Kováts (eds), The Flora of the Kiskunság National Park I. Magyar Természettudományi Múzeum, Budapest. pp. 9–20.

    Google Scholar 

  8. Borhidi, A., T. Morschhauser and É. Salamon-Albert. 2003. A new rock-heath association in the Mecsek Mts (South Hungary). Acta Bot. Hung. 45: 35–51.

    Article  Google Scholar 

  9. Camarero, J.J. and E. Gutiérrez. 2002. Plant species distribution across two contrasting treeline ecotones in the Spanish Pyrenees. Plant Ecol. 162: 247–257.

    Article  Google Scholar 

  10. Chytry, M., V. Grulich, L. Tichy and M. Kouril. 1999. Phytogeographical boundary between the Pannonicum and Hercynicum, a multivariate analysis of landscape in the Podyji/Thayatal National Park, Czech Republic/Austria. Preslia 71: 23–41.

    Google Scholar 

  11. Chytry, M. and M. Rafajova. 2002. Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75: 1–15.

    Google Scholar 

  12. Csiky, J. 2005. Data to the flora and vegetation of Hungary I. Kitaibelia 10: 138–153. (In Hungarian with English abstract.).

    Google Scholar 

  13. Delcourt, H.R., P.A. Delcourt and T. Webb III. 1983. Dynamic plant ecology: the spectrum of vegetational change in space and time. Quaternary Sci. Rev. 1: 153–175.

    Article  Google Scholar 

  14. Donita, N, Z. V. Karamyseva, A. Borhidi and U. Bohn. 2000/2003. Forest steppes (Meadow steppes alternating with nemoral deciduous forests) and dry grasslands alternating with dry scrub. In: U. Bohn, R. Neuhäusl, G. Gollub, C. Hettwer, Z. Neuhäuslová, Th. Raus, H. Shlüter and H. Weber (eds), Karte der natürlichen Vegetation Europas / Map of the Natural Vegetation of Europe. Massstab/Scale 1: 2 500 000. Landwirtschaftsverlag, Münster. pp. 376–389.

    Google Scholar 

  15. Fekete, G., A. Kun and Zs. Molnár. 1999. Floristic characteristics of the forest-steppe in the Duna-Tisza interfluve. In: E. Kovács-Láng, E. Molnár, Gy. Kröel-Dulay and S. Barabás (eds), Longterm Ecological Research in the Kiskunság, Hungary. Institute of Ecology and Botany of the Hungarian Academy of Sciences, Vácrátót. pp. 13–14.

    Google Scholar 

  16. Fekete, G., Zs. Molnár, A. Kun, I. Somodi and F. Horváth 2008. Xerothermic species in the region Duna-Tisza-köze: chorological types and floristic gradient. In: Gy. Kröel-Dulay, T. Kalapos, and A. Mojzes (eds), Soil-Vegetation-Climate Interactions. Institute of Ecology and Botany of the Hungarian Academy of Sciences, Vácrátót. pp. 11–21. (In Hungarian).

    Google Scholar 

  17. Finnie, T.J.R., C.D. Preston, M.O. Hill, P. Uotila and M.J. Crawley. 2007. Floristic elementsin European vascular plants:ananalysis based on Atlas Florae Europaeae. J. Biogeogr. 34: 1848–1872.

    Article  Google Scholar 

  18. Gastner, M.T., B. Oborny, D.K. Zimmermann and G. Pruessner. 2009. Transition from connected to fragmented vegetation across an environmental gradient: scaling laws in ecotone geometry. Am. Nat. 174: E23–E39.

    Article  Google Scholar 

  19. Gehrig-Fasel, J., A. Guisan and N.E. Zimmermann. 2007. Treeline shifts in the Swiss Alps: Climate change or land abandonment? J. Veg. Sci. 18: 571–582.

    Article  Google Scholar 

  20. Gosz, J.R. 1992. Ecological functions in a biome transition zone: Translating local responses to broad-scale dynamics. In: A.J. Hansen and F. di Castri (eds), Landscape Boundaries. Springer Verlag, New York. pp. 55–75.

    Google Scholar 

  21. Gosz, J.R. 1993. Ecotone hierarchies. Ecol. Appl. 3: 369–376.

    Article  Google Scholar 

  22. Hennenberg, K.J., D. Goetze, L. Kouamè, B. Orthmann and S. Porembski. 2005. Border and ecotone detection by vegetation composition along forest-savanna transects in Ivory Coast. J. Veg. Sci. 16: 301–310.

    Article  Google Scholar 

  23. Horvat, I., V. Glavac and H. Ellenberg. 1974. Vegetation Südösteuropas. Fischer Verlag.

  24. Ivan, D., N. Donita, G. Coldea, V. Sanda, A. Popescu, T. Chifu, N. Boscaiu, D. Mititelu and M. Pauca-Comanescu. 1993. Vegetation potentielle de la Roumanie. Braun-Blanquetia 9: 3–79.

    Google Scholar 

  25. Jakucs, P. 1961. Die Phytozönologischen Verhältnisse der Flaumeichen-Buschwälder Südostmitteleuropas. Akadémiai Kiadó, Budapest.

    Google Scholar 

  26. Járai-Komlódi, M. 2003. Quaternary Vegetation History in Hungary. Geographical Research Institute, Budapest.

    Google Scholar 

  27. Kent, M., W.J. Gill, R.E. Weaver and R.P. Armitage. 1997. Landscape and plant community boundaries in biogeography. Prog. Phys. Geog. 21: 315–353.

    Article  Google Scholar 

  28. Köppen, W. 1929. Typische und Übergangsklimate. Meteorol. Z. 46: 121–126.

    Google Scholar 

  29. Kordos, L. 1987. Climatic and ecological changes in Hungary during the last 15 000 years. In: M. Pécsi, L. Kordos (eds), Holocene Environment in Hungary. Geographical Research Institute of the Hungarian Academy of Sciences, Budapest. pp. 11–24.

    Google Scholar 

  30. Kovács-Láng, E., Gy. Kröel-Dulay, M. Kertész, G. Fekete, S. Bartha, J. Mika, I. Dobi-Wantuch, T. Rédei, K. Rajkai and I. Hahn. 2000. Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30: 385–407.

    Google Scholar 

  31. Kozlowski, G., S. Bürcher, M. Fleury and F. Huber. 2009. The Atlantic elements in the Swiss flora: distribution, diversity, and conservation status. Biodivers. Conserv. 18: 649–662.

    Article  Google Scholar 

  32. Krolopp, E. 1995. Paleoecological reconstruction of the late Pleistocene, based on loess malacofauna in Hungary. GeoJournal 36: 213–222.

    Article  Google Scholar 

  33. Lepší, M. and P. Lepší. 2006. Rubus kletensis, a new species from South Bohemia and Upper Austria. Preslia 78: 103–114.

    Google Scholar 

  34. Magyari, E.K. 2002. Climatic versus human modification of the Late Quaternary vegetation in Eastern Hungary. PhD Thesis. University of Debrecen. (in Hungarian with English summary).

  35. Magyari, E.K., J.C. Chapman, D.G. Passmore, J.R.M, Allen, J.P. Huntley. and B. Huntley. 2010. Holocene persistence of wooded steppe in the Great Hungarian Plain. J. Biogeogr. 37: 915–935.

    Article  Google Scholar 

  36. McCullagh, P. and J.A. Nelder. 1983. Generalized Linear Models. Chapman and Hall, London.

    Book  Google Scholar 

  37. Molnár, Zs. and A. Kun. 2000. Relics of the forest steppe in Alföld, Hungary. WWF series, 15. Budapest, WWF Hungary. (In Hungarian).

  38. Nagy, J. 2007. Vascular flora of the Börzsöny Mountains. Duna-Ipoly Nemzeti Park Igazgatóság, Budapest.

    Google Scholar 

  39. Neilson, R. P. 1993. Transient ecotone response to climatic change: some conceptual and modelling approaches. Ecol. Appl. 3: 385–395.

    Article  Google Scholar 

  40. Niklfeld, H. 1971. Bericht über die Kartierung der Flora Mitteleuropas. Taxon 20: 545–571.

    Article  Google Scholar 

  41. Niklfeld, H. 1973. Atlas der Donauländer. Naturliche Vegetation. Österreichisches Ost- und Südosteuropa-Institut, Wien.

    Google Scholar 

  42. Pearman, P.B., C.F. Randin, O. Broennimann, P. Vittoz, W.O. van der Knaap, R. Engler, G. Le Lay, N.E., Zimmermann and A. Guisan. 2008. Testing predictions of change in plant-species distributions across six millennia. Ecol. Lett. 11: 357–369.

    Article  Google Scholar 

  43. Pécsi, M. and B. Sárfalvi. 1965. The Geography of Hungary. Translation published by the American Geographical Society, New York.

    Google Scholar 

  44. Peschkova, N.V. and N.I. Andreyashkina. 2009. Structural-functional organisation of lower vegetation layers in tree communities of the upper timberline ecotone in the polar Urals. Russ. J. Ecol. 40: 44–47.

    Article  Google Scholar 

  45. Purger, D., J. Csiky and J. Topic. 2008. Dwarf iris, Iris pumila L. (Iridaceae), a new species of the Croatian flora. Acta Bot. Croat. 67: 97–102.

    Google Scholar 

  46. Randin, C.F, R. Engler, S. Normand, M. Zappa, N.E. Zimmermann, P.B. Pearman, P. Vittoz, W. Thuiller and A. Guisan. 2009. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15: 1557–1569.

    Article  Google Scholar 

  47. R Development Core Team 2008. A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Austria. ISBN 3-900051-07-0. URL https://doi.org/http://www.R-pro-ject.org.

    Google Scholar 

  48. Risser, P.G. 1995. The status of the science examining ecotones. BioScience 45: 318–325.

    Article  Google Scholar 

  49. Shelford, V.E. 1913. Animal Communities in Temperate America. Geographic Society of Chicage Bulletin No. 5. University of Chicago Press, Chicago.

    Book  Google Scholar 

  50. Simon, T. 2000. A Guide to the Identification of the Hungarian Vascular Flora. Nemzeti Tankönyvkiadó, Budapest. (In Hungarian).

    Google Scholar 

  51. Sólymos, P. 2008. Quantitative biogeographic characterization of Hungary based on the distribution data of land snails (Mollusca, Gastropoda). A case of nestedness of species ranges with extensive overlap of biotic elements. Acta Zool. Hung. 54: 269–287.

    Google Scholar 

  52. Somlyay, L. and N. Bauer. 2007. Distribution of a little known plant species, Valerianella pumila in Hungary. Stud. Bot. Hung. 39: 143–154.

    Google Scholar 

  53. Szujkó-Lacza, J. and D. Kováts 1993. The Flora of the Kiskunság National Park I. Hungarian National History Museum, Budapest.

    Google Scholar 

  54. Tansley, A.Q. 1939. The British Islands and Their Vegetation I. Cambridge University Press, Cambridge.

    Google Scholar 

  55. Timoney, K.P., G.H. La Roi and M.R.T. Dale. 1993. Subarctic forest-tundra vegetation gradients: The sigmoid wave hypothesis. J. Veg. Sci. 4: 387–394.

    Article  Google Scholar 

  56. Tutin,T.G., V.H. Heywood, N.A. Burges,D.M. Moore,D.H. Valentine, S.M. Walters and D.A. Webb 1964-1993. Flora Europaea, Vols. 1-5. Cambridge University Press, Cambridge.

    Google Scholar 

  57. Walker, S., J.B. Wilson, J.B. Steel, G.L. Rapson, B. Smith, W.McG. King and Y.H. Cottam. 2003. Properties of ecotones: Evidence from five ecotones objectively determined from a coastal vegetation gradient. J. Veg. Sci. 14: 579–590.

    Article  Google Scholar 

  58. Walter, H. 1943. Die Vegetation Osteuropas. Fischer Verlag, Stuttgart.

    Google Scholar 

  59. Weaver, J.E. and F.W. Albertson. 1956. Grass Country of the Great Plains: Their Nature and Use. Johnsen Publishing, Lincoln, Nebraska.

    Google Scholar 

  60. Zalatnay, M. and L. Körmöczi. 2004. Fine scale pattern of theboundary zones in alkaline grassland communities. Community Ecol. 5: 235–246.

    Article  Google Scholar 

  61. Zólyomi, B. 1953. Die Entwicklungsgeschichte der Vegetation Ungarns seit demletzten Interglazial. Acta Biol. Hung. 4: 367–409.

    Google Scholar 

  62. Zólyomi, B. 1957. Der Tatarenahorn-Eichen-Lösswald der zonalen Waldsteppe. Acta Bot. Hung. 3: 401–424.

    Google Scholar 

  63. Zólyomi, B. 1958. The natural vegetation of Budapest and its environs. In: M. Pécsi (ed), The Natural Picture of Budapest. pp. 509–642. (In Hungarian.).

  64. Zólyomi, B. 1967. Reconstructed vegetation map of Hungary 1:1500 000. In: S. Radó (ed), National Atlas of Hungary. Kartográfiai Vállalat, Budapest.

    Google Scholar 

  65. Zólyomi, B. 1987. Coenotone, ecotone and their role in preserving relic species. Acta Bot. Hung. 33: 3–18.

    Google Scholar 

  66. Zólyomi, B. and G. Fekete. 1994. The Pannonian loess steppe: differentiation in space and time. Abstr. Bot. 18: 29–41.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Somodi.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Fekete, G., Somodi, I. & Molnár, Z. Is chorological symmetry observable within the forest steppe biome in Hungary? – A demonstrative analysis of floristic data. COMMUNITY ECOLOGY 11, 140–147 (2010). https://doi.org/10.1556/ComEc.11.2010.2.2

Download citation

Keywords

  • Distribution maps
  • Duna-Tisza köze
  • Generalized Linear Model
  • Quantitative plant geography
  • Species occurrence
  • Steppe biome