Advertisement

Community Ecology

, Volume 11, Issue 2, pp 140–147 | Cite as

Is chorological symmetry observable within the forest steppe biome in Hungary? – A demonstrative analysis of floristic data

  • G. Fekete
  • I. SomodiEmail author
  • Zs. Molnár
Article

Abstract

Biome interfaces are expected to exhibit chorological symmetry, i.e., decreasing trends in the number of species associated with each of the two neighbouring biomes as we progress from one into the other. Our aim was to test for such a pattern within the forest steppe biome, which is a transition zone in itself between the temperate deciduous forests and the steppe biome. Presence of chorological symmetry would provide indirect evidence for the prehuman presence of zonal steppes in the Carpathian basin. We also whished to provide an example with this analysis for drawing biogeographical conclusions based on quantitative species occurrence data, an information source hitherto neglected in Central Europe. Occurrence patterns of forest and steppe species were analysed at the Duna-Tisza köze (Danube-Tisza Interfluve) by the traditional qualitative biogeographic method and by hierarchical classification of predicted spatial pattern based on Generalized Linear Models with logistic link function. Species presences were explained by variables describing spatial orientation. In this approach, an out-group of sand grassland species was also added to characetrise the discrimination ability of the approach. The quantitative method discriminated the out group of sand grassland species, providing evidence of its suitability for our purpose. The results of the quantitative investigations were also in accordance with the qualitative evaluation. Surprisingly, forest and steppe species showed similar distributional patterns, i.e., no chorological symmetry was discernable. The quantitative biogeographic approach unveiled important evidence for deciding about the potential presence of zonal steppes in the Carpathian basin. Although the observed similarity of the distribution of forest and steppe species may have multiple reasons, the major cause of the lack of chorological symmetry is most probably the lack of zonal steppe South of the forest steppe biome in the Carpathian basin. Additional explanations include land use pattern and the mountain belt around the basin acting as a refugium in the ice ages.

Keywords

Distribution maps Duna-Tisza köze Generalized Linear Model Quantitative plant geography Species occurrence Steppe biome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2010_1102140_MOESM1_ESM.pdf (21 kb)
Supplementary material, approximately 22 KB.

References

  1. Barbaric, A.I., D.N. Dobrochaeva and O.N. Dubovik. 1986. The Chorology of the Flora of Ukraine. Naukova Dumka, Kiew. (In Ukrainian).Google Scholar
  2. Barina, Z. 2006. Flora of the Gerecse Mountains. Duna-Ipoly Nemzeti Park. Magyar Természettudományi Múzeum, Budapest. (in Hungarian).Google Scholar
  3. Bauer, N, L. Lőkös and B. Papp. 2008. Distribution and habitats of Cardaminopsis petraea in Hungary. Stud. Bot. Hung. 39: 113–138.Google Scholar
  4. Berg, L. 1958. Die geographischen Zonen der Sowjetunion I. Teubner Verlag, Leipzig.Google Scholar
  5. Biró, M., A. Révész, Zs. Molnár, F. Horváth and B. Czucz. 2008. Regional habitat pattern of the Duna-Tisza köze in Hungary II. The sand, the steppe and the riverine vegetation: degraded and ruined habitats. Acta Bot. Hung. 50: 21–62.CrossRefGoogle Scholar
  6. Bohn, U., R. Neuhäusl, G. Gollub, C. Hettwer, Z. Neuhäuslová, Th. Raus, H. Shlüter and H. Weber. 2000/2003. Karte der natürlichen Vegetation Europas / Map of the Natural Vegetation of Europe. Massstab/Scale 1: 2 500 000. Landwirtschaftsverlag, Münster.Google Scholar
  7. Borhidi, A. 1993. Characteristics of the climate of the Danube-Tisza Mid-region. In: J. Szujkó-Lacza and D. Kováts (eds), The Flora of the Kiskunság National Park I. Magyar Természettudományi Múzeum, Budapest. pp. 9–20.Google Scholar
  8. Borhidi, A., T. Morschhauser and É. Salamon-Albert. 2003. A new rock-heath association in the Mecsek Mts (South Hungary). Acta Bot. Hung. 45: 35–51.CrossRefGoogle Scholar
  9. Camarero, J.J. and E. Gutiérrez. 2002. Plant species distribution across two contrasting treeline ecotones in the Spanish Pyrenees. Plant Ecol. 162: 247–257.CrossRefGoogle Scholar
  10. Chytry, M., V. Grulich, L. Tichy and M. Kouril. 1999. Phytogeographical boundary between the Pannonicum and Hercynicum, a multivariate analysis of landscape in the Podyji/Thayatal National Park, Czech Republic/Austria. Preslia 71: 23–41.Google Scholar
  11. Chytry, M. and M. Rafajova. 2002. Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75: 1–15.Google Scholar
  12. Csiky, J. 2005. Data to the flora and vegetation of Hungary I. Kitaibelia 10: 138–153. (In Hungarian with English abstract.).Google Scholar
  13. Delcourt, H.R., P.A. Delcourt and T. Webb III. 1983. Dynamic plant ecology: the spectrum of vegetational change in space and time. Quaternary Sci. Rev. 1: 153–175.CrossRefGoogle Scholar
  14. Donita, N, Z. V. Karamyseva, A. Borhidi and U. Bohn. 2000/2003. Forest steppes (Meadow steppes alternating with nemoral deciduous forests) and dry grasslands alternating with dry scrub. In: U. Bohn, R. Neuhäusl, G. Gollub, C. Hettwer, Z. Neuhäuslová, Th. Raus, H. Shlüter and H. Weber (eds), Karte der natürlichen Vegetation Europas / Map of the Natural Vegetation of Europe. Massstab/Scale 1: 2 500 000. Landwirtschaftsverlag, Münster. pp. 376–389.Google Scholar
  15. Fekete, G., A. Kun and Zs. Molnár. 1999. Floristic characteristics of the forest-steppe in the Duna-Tisza interfluve. In: E. Kovács-Láng, E. Molnár, Gy. Kröel-Dulay and S. Barabás (eds), Longterm Ecological Research in the Kiskunság, Hungary. Institute of Ecology and Botany of the Hungarian Academy of Sciences, Vácrátót. pp. 13–14.Google Scholar
  16. Fekete, G., Zs. Molnár, A. Kun, I. Somodi and F. Horváth 2008. Xerothermic species in the region Duna-Tisza-köze: chorological types and floristic gradient. In: Gy. Kröel-Dulay, T. Kalapos, and A. Mojzes (eds), Soil-Vegetation-Climate Interactions. Institute of Ecology and Botany of the Hungarian Academy of Sciences, Vácrátót. pp. 11–21. (In Hungarian).Google Scholar
  17. Finnie, T.J.R., C.D. Preston, M.O. Hill, P. Uotila and M.J. Crawley. 2007. Floristic elementsin European vascular plants:ananalysis based on Atlas Florae Europaeae. J. Biogeogr. 34: 1848–1872.CrossRefGoogle Scholar
  18. Gastner, M.T., B. Oborny, D.K. Zimmermann and G. Pruessner. 2009. Transition from connected to fragmented vegetation across an environmental gradient: scaling laws in ecotone geometry. Am. Nat. 174: E23–E39.CrossRefGoogle Scholar
  19. Gehrig-Fasel, J., A. Guisan and N.E. Zimmermann. 2007. Treeline shifts in the Swiss Alps: Climate change or land abandonment? J. Veg. Sci. 18: 571–582.CrossRefGoogle Scholar
  20. Gosz, J.R. 1992. Ecological functions in a biome transition zone: Translating local responses to broad-scale dynamics. In: A.J. Hansen and F. di Castri (eds), Landscape Boundaries. Springer Verlag, New York. pp. 55–75.CrossRefGoogle Scholar
  21. Gosz, J.R. 1993. Ecotone hierarchies. Ecol. Appl. 3: 369–376.CrossRefGoogle Scholar
  22. Hennenberg, K.J., D. Goetze, L. Kouamè, B. Orthmann and S. Porembski. 2005. Border and ecotone detection by vegetation composition along forest-savanna transects in Ivory Coast. J. Veg. Sci. 16: 301–310.CrossRefGoogle Scholar
  23. Horvat, I., V. Glavac and H. Ellenberg. 1974. Vegetation Südösteuropas. Fischer Verlag.Google Scholar
  24. Ivan, D., N. Donita, G. Coldea, V. Sanda, A. Popescu, T. Chifu, N. Boscaiu, D. Mititelu and M. Pauca-Comanescu. 1993. Vegetation potentielle de la Roumanie. Braun-Blanquetia 9: 3–79.Google Scholar
  25. Jakucs, P. 1961. Die Phytozönologischen Verhältnisse der Flaumeichen-Buschwälder Südostmitteleuropas. Akadémiai Kiadó, Budapest.Google Scholar
  26. Járai-Komlódi, M. 2003. Quaternary Vegetation History in Hungary. Geographical Research Institute, Budapest.Google Scholar
  27. Kent, M., W.J. Gill, R.E. Weaver and R.P. Armitage. 1997. Landscape and plant community boundaries in biogeography. Prog. Phys. Geog. 21: 315–353.CrossRefGoogle Scholar
  28. Köppen, W. 1929. Typische und Übergangsklimate. Meteorol. Z. 46: 121–126.Google Scholar
  29. Kordos, L. 1987. Climatic and ecological changes in Hungary during the last 15 000 years. In: M. Pécsi, L. Kordos (eds), Holocene Environment in Hungary. Geographical Research Institute of the Hungarian Academy of Sciences, Budapest. pp. 11–24.Google Scholar
  30. Kovács-Láng, E., Gy. Kröel-Dulay, M. Kertész, G. Fekete, S. Bartha, J. Mika, I. Dobi-Wantuch, T. Rédei, K. Rajkai and I. Hahn. 2000. Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30: 385–407.Google Scholar
  31. Kozlowski, G., S. Bürcher, M. Fleury and F. Huber. 2009. The Atlantic elements in the Swiss flora: distribution, diversity, and conservation status. Biodivers. Conserv. 18: 649–662.CrossRefGoogle Scholar
  32. Krolopp, E. 1995. Paleoecological reconstruction of the late Pleistocene, based on loess malacofauna in Hungary. GeoJournal 36: 213–222.CrossRefGoogle Scholar
  33. Lepší, M. and P. Lepší. 2006. Rubus kletensis, a new species from South Bohemia and Upper Austria. Preslia 78: 103–114.Google Scholar
  34. Magyari, E.K. 2002. Climatic versus human modification of the Late Quaternary vegetation in Eastern Hungary. PhD Thesis. University of Debrecen. (in Hungarian with English summary).Google Scholar
  35. Magyari, E.K., J.C. Chapman, D.G. Passmore, J.R.M, Allen, J.P. Huntley. and B. Huntley. 2010. Holocene persistence of wooded steppe in the Great Hungarian Plain. J. Biogeogr. 37: 915–935.CrossRefGoogle Scholar
  36. McCullagh, P. and J.A. Nelder. 1983. Generalized Linear Models. Chapman and Hall, London.CrossRefGoogle Scholar
  37. Molnár, Zs. and A. Kun. 2000. Relics of the forest steppe in Alföld, Hungary. WWF series, 15. Budapest, WWF Hungary. (In Hungarian).Google Scholar
  38. Nagy, J. 2007. Vascular flora of the Börzsöny Mountains. Duna-Ipoly Nemzeti Park Igazgatóság, Budapest.Google Scholar
  39. Neilson, R. P. 1993. Transient ecotone response to climatic change: some conceptual and modelling approaches. Ecol. Appl. 3: 385–395.CrossRefGoogle Scholar
  40. Niklfeld, H. 1971. Bericht über die Kartierung der Flora Mitteleuropas. Taxon 20: 545–571.CrossRefGoogle Scholar
  41. Niklfeld, H. 1973. Atlas der Donauländer. Naturliche Vegetation. Österreichisches Ost- und Südosteuropa-Institut, Wien.Google Scholar
  42. Pearman, P.B., C.F. Randin, O. Broennimann, P. Vittoz, W.O. van der Knaap, R. Engler, G. Le Lay, N.E., Zimmermann and A. Guisan. 2008. Testing predictions of change in plant-species distributions across six millennia. Ecol. Lett. 11: 357–369.CrossRefGoogle Scholar
  43. Pécsi, M. and B. Sárfalvi. 1965. The Geography of Hungary. Translation published by the American Geographical Society, New York.Google Scholar
  44. Peschkova, N.V. and N.I. Andreyashkina. 2009. Structural-functional organisation of lower vegetation layers in tree communities of the upper timberline ecotone in the polar Urals. Russ. J. Ecol. 40: 44–47.CrossRefGoogle Scholar
  45. Purger, D., J. Csiky and J. Topic. 2008. Dwarf iris, Iris pumila L. (Iridaceae), a new species of the Croatian flora. Acta Bot. Croat. 67: 97–102.Google Scholar
  46. Randin, C.F, R. Engler, S. Normand, M. Zappa, N.E. Zimmermann, P.B. Pearman, P. Vittoz, W. Thuiller and A. Guisan. 2009. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15: 1557–1569.CrossRefGoogle Scholar
  47. R Development Core Team 2008. A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Austria. ISBN 3-900051-07-0. URL https://doi.org/http://www.R-pro-ject.org.Google Scholar
  48. Risser, P.G. 1995. The status of the science examining ecotones. BioScience 45: 318–325.CrossRefGoogle Scholar
  49. Shelford, V.E. 1913. Animal Communities in Temperate America. Geographic Society of Chicage Bulletin No. 5. University of Chicago Press, Chicago.CrossRefGoogle Scholar
  50. Simon, T. 2000. A Guide to the Identification of the Hungarian Vascular Flora. Nemzeti Tankönyvkiadó, Budapest. (In Hungarian).Google Scholar
  51. Sólymos, P. 2008. Quantitative biogeographic characterization of Hungary based on the distribution data of land snails (Mollusca, Gastropoda). A case of nestedness of species ranges with extensive overlap of biotic elements. Acta Zool. Hung. 54: 269–287.Google Scholar
  52. Somlyay, L. and N. Bauer. 2007. Distribution of a little known plant species, Valerianella pumila in Hungary. Stud. Bot. Hung. 39: 143–154.Google Scholar
  53. Szujkó-Lacza, J. and D. Kováts 1993. The Flora of the Kiskunság National Park I. Hungarian National History Museum, Budapest.Google Scholar
  54. Tansley, A.Q. 1939. The British Islands and Their Vegetation I. Cambridge University Press, Cambridge.Google Scholar
  55. Timoney, K.P., G.H. La Roi and M.R.T. Dale. 1993. Subarctic forest-tundra vegetation gradients: The sigmoid wave hypothesis. J. Veg. Sci. 4: 387–394.CrossRefGoogle Scholar
  56. Tutin,T.G., V.H. Heywood, N.A. Burges,D.M. Moore,D.H. Valentine, S.M. Walters and D.A. Webb 1964-1993. Flora Europaea, Vols. 1-5. Cambridge University Press, Cambridge.Google Scholar
  57. Walker, S., J.B. Wilson, J.B. Steel, G.L. Rapson, B. Smith, W.McG. King and Y.H. Cottam. 2003. Properties of ecotones: Evidence from five ecotones objectively determined from a coastal vegetation gradient. J. Veg. Sci. 14: 579–590.CrossRefGoogle Scholar
  58. Walter, H. 1943. Die Vegetation Osteuropas. Fischer Verlag, Stuttgart.Google Scholar
  59. Weaver, J.E. and F.W. Albertson. 1956. Grass Country of the Great Plains: Their Nature and Use. Johnsen Publishing, Lincoln, Nebraska.Google Scholar
  60. Zalatnay, M. and L. Körmöczi. 2004. Fine scale pattern of theboundary zones in alkaline grassland communities. Community Ecol. 5: 235–246.CrossRefGoogle Scholar
  61. Zólyomi, B. 1953. Die Entwicklungsgeschichte der Vegetation Ungarns seit demletzten Interglazial. Acta Biol. Hung. 4: 367–409.Google Scholar
  62. Zólyomi, B. 1957. Der Tatarenahorn-Eichen-Lösswald der zonalen Waldsteppe. Acta Bot. Hung. 3: 401–424.Google Scholar
  63. Zólyomi, B. 1958. The natural vegetation of Budapest and its environs. In: M. Pécsi (ed), The Natural Picture of Budapest. pp. 509–642. (In Hungarian.).Google Scholar
  64. Zólyomi, B. 1967. Reconstructed vegetation map of Hungary 1:1500 000. In: S. Radó (ed), National Atlas of Hungary. Kartográfiai Vállalat, Budapest.Google Scholar
  65. Zólyomi, B. 1987. Coenotone, ecotone and their role in preserving relic species. Acta Bot. Hung. 33: 3–18.Google Scholar
  66. Zólyomi, B. and G. Fekete. 1994. The Pannonian loess steppe: differentiation in space and time. Abstr. Bot. 18: 29–41.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Ecology and Botany of the Hungarian Academy of SciencesVácrátótHungary
  2. 2.Department of Plant Taxonomy and Ecology, Institute of BiologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations