Effect of reduction in sampling effort for monitoring epiphytic lichen diversity in forests

Abstract

In Europe, epiphytic lichens are incorporated in forest diversity monitoring projects in which sampling at the tree level is carried out on 4 grids on the 4 cardinal points (N, S, E, W) of the trunk. Our results, based on the analysis of a dataset referring to six forest sites in NE-Italy and including 264 trees, indicate that a lichen assessment based on sampling at the tree level less than four cardinal points might be effective in estimating species richness across different forest types, showing very high rates of species capture. Similar results were achieved if the reduction of sampling effort is applied to the number of trees sampled within each area. This effect can be explained taking into account the redundant information collected on the same tree. In the framework of forest monitoring programs, the main perspective of our results is related to the possibility of investing saved resources for improving lichen inventories by including in the surveys currently neglected microhabitats. Further studies would be welcome to identify an optimal balance between sampling effort and information gathered, as economic resources are often a constraint to activate and maintain large-scale and long-term monitoring projects.

Abbreviations

PAN:

“Paneveggio” sampling area

REN:

“Renon” sampling area

DAN:

“Danta di Cadore” sampling area

CAN:

“Cansiglio” sampling area

MON:

“Monticolo” sampling area

CEL:

“Celarda” sampling area

References

  1. Asta, J., W. Erhardt, M. Ferretti, F. Fornasier, U. Kirschbaum, P.L. Nimis,W. Purvis, S. Pirintsos, C. Scheidegger, C. Van Haluwyn and V. Wirth. 2002. Mapping lichen diversity as an indicator of environmental quality. In: P.L. Nimis, C. Scheidegger and P.A. Wolseley (eds.), Monitoring with Lichens - Monitoring Lichens. Kluwer, Dordrecht, pp. 273–279.

    Google Scholar 

  2. Bacaro, G. and C. Ricotta. 2007. A spatially explicit measure of beta diversity. Community Ecol. 8: 41–46.

    Article  Google Scholar 

  3. Baffetta, F., G. Bacaro, L. Fattorini, D. Rocchini and A. Chiarucci. 2007. Multi-stage cluster sampling for estimating average species richness at different spatial grains. Community Ecol. 8: 119–127.

    Article  Google Scholar 

  4. Bergamini, A., C. Scheidegger, S. Stofer, P. Carvalho, S. Davey, M. Dietrich, F. Dubs, E. Farkas, U. Groner, K. Kärkkäinen, C. Keller, L. Lökös, S. Lommi, C. Máguas, R. Mitchell, P. Pinho, V.J. Rico, G. Aragón, A.M. Truscott, P. Wolseley, and A. Watt. 2005. Performance of macrolichens and lichen genera as indicators of lichen species richness and composition. Conserv. Biol. 19: 1051–1062.

    Google Scholar 

  5. Berryman, S. and B. McCune. 2006. Epiphytic lichens along gradients in topography and stand structure in western Oregon, USA. Pac. Northwest Fun. 1: 1–38.

    Google Scholar 

  6. Brin, A., C. Meredieu, D. Piou, H. Brustel and H. Jactel. 2008. Changes in quantitative patterns of dead wood in maritime pine plantations over time. Forest Ecol. Manag. 256: 913–921.

    Article  Google Scholar 

  7. Bunge, J. and M. Fitzpatrick. 1993. Estimating the number of species: a review. J. Am. Stat. Assoc. 88: 364–373.

    Google Scholar 

  8. Chiarucci, A., V. De Dominicis and J.B. Wilson. 2001. Structure and floristic diversity in permanent monitoring plots in forest ecosystems of Tuscany. Forest Ecol. Manag. 141: 201–210.

    Article  Google Scholar 

  9. Chiarucci, A., G. Bacaro, D. Rocchini and L. Fattorini. 2008. Discovering and rediscovering the sample-based rarefaction formula in ecological literature. Community Ecol. 9: 121–123.

    Article  Google Scholar 

  10. Chiarucci, A., G. Bacaro, D. Rocchini, C. Ricotta, M.W. Palmer and S.M. Scheiner. 2009. Spatially constrained rarefaction: incorporating the autocorrelated structure of biological communities into sample-based rarefaction. Community Ecol. 10: 209–214.

    Article  Google Scholar 

  11. Colwell, R.K. and J.A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. Philos. T. Roy. Soc. B 345: 101–118.

    CAS  Article  Google Scholar 

  12. De Vries, W., G.J. Reinds and E. Vel. 2003. Intensive monitoring of forest ecosystems in Europe 2: atmospheric deposition and its impact on soil solution chemistry. Forest Ecol. Manag. 174: 97–115.

    Article  Google Scholar 

  13. Fischer, R., O. Granke, G. Chirici, P. Meyer, W. Seidling, S. Stofer, P. Corona, M. Marchetti and D. Travaglini. 2009. Background, main results and conclusions from a test phase for biodiversity assessments on intensive forest monitoring plots in Europe. iForest 2: 67–74.

    CAS  Article  Google Scholar 

  14. Fritz, Ö. 2009. Vertical distribution of epiphytic bryophytes and lichens emphasizes the importance of old beeches in conservation. Biodivers. Conserv. 18: 289–304.

    Article  Google Scholar 

  15. Fritz, Ö., L. Gustafsson and K. Larsson. 2008. Does forest continuity matter in conservation? A study of epiphytic lichens and bryophytes in beech forests of southern Sweden. Biol. Conserv. 141: 655–668.

    Article  Google Scholar 

  16. Giordani, P., G. Brunialti, R. Benesperi, G. Rizzi, L. Frati and P. Modenesi. 2009. Rapid biodiversity assessment in lichen diversity surveys: implications for quality assurance. J. Environ. Monitor. 11: 730–735.

    CAS  Article  Google Scholar 

  17. Giordani, P., G. Brunialti, J. Nascimbene, E. Gottardini, F. Cristofolini, D. Isocrono, E. Matteucci and L. Paoli. 2006. Aspects of biological diversity in the CONECOFOR plots. III. Epiphytic lichens. Ann. Ist. Sper. Selv. 30 suppl. 2: 43–50.

    Google Scholar 

  18. Gotelli, N.J. and R.K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4: 379–391.

    Article  Google Scholar 

  19. Gustafsson, L., J. De Jong and M. Norén. 1999. Evaluation of Swedish woodland key habitats using red-listed bryophytes and lichens. Biodivers. Conserv. 8: 1101–1114.

    Article  Google Scholar 

  20. Hortal J., P.A.V. Borges and C. Gaspar. 2006. Evaluating the performance of species richness estimators: sensitivity to sample grain size. J. Anim. Ecol. 75: 274–287.

    Article  Google Scholar 

  21. Kinnunen, H., T. Holopainen and L. Kärenlampi. 2003. Sources of error in epiphytic lichen variables mapped as bioindicators: needs to modify the Finnish standard. Ecol. Indic. 3: 1–11.

    Article  Google Scholar 

  22. Kobayashi, S. 1974. The species-area relation I. A model for discrete sampling. Res. Pop. Ecol. 15: 223–237.

    Article  Google Scholar 

  23. Kremsater, L., F. Bunnell, D. Huggard and G. Dunsworth. 2003. Indicators to assess biological diversity: Weyerhaeusers coastal British Columbia forest project. Forest. Chron. 79: 590–601.

    Article  Google Scholar 

  24. Mäkipää, R. and J. Heikkinen. 2003. Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland. J. Veg. Sci. 14: 497–508.

    Article  Google Scholar 

  25. McCune, B. and P. Lesica. 1992. The trade-off between species capture and quantitative accuracy in ecological inventory of lichens and bryophytes in forests in Montana. The Bryologist 95: 296–304.

    Article  Google Scholar 

  26. Nascimbene, J. 2006. Indagine lichenologica nelle aree di monitor-aggio integrato IT01-Renon e IT02-Monticolo (Alto Adige). Forest observer 2/3: 157–168.

    Google Scholar 

  27. Nascimbene, J., L. Marini and P.L. Nimis. 2007a. Influence of forest management on epiphytic lichens in a temperate beech forest of northern Italy. Forest Ecol. Manag. 247: 43–47.

    Article  Google Scholar 

  28. Nascimbene, J., L. Marini and P.L. Nimis. 2008. Epiphytic lichens in a riparian natural reserve of Northern Italy: species richness, composition and conservation. Plant Biosys. 142: 94–98.

    Article  Google Scholar 

  29. Nascimbene, J., L. Marini, R. Motta and P.L. Nimis. 2009. Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests. Biodivers. Conserv. 18: 1509–1522.

    Article  Google Scholar 

  30. Nascimbene, J., P.L. Nimis and L. Marini. 2007b. Testing indicators of epiphytic lichen diversity: a case study in N Italy. Biodivers. Conserv. 16: 3377–3383.

    Article  Google Scholar 

  31. Palmer, M.W. 1995. How should one count species. Nat. Areas J. 15: 124–135.

    Google Scholar 

  32. Policnik, H., P. Simončič and F. Batic. 2008. Monitoring air quality with lichens: a comparison between mapping in forest sites and in open areas. Environ. Pollut. 151: 395–400.

    CAS  Article  Google Scholar 

  33. Rogers, P.C. and R.J. Ryel. 2008. Lichen community change in response to succession in aspen forests of the Rocky Mountains, USA. Forest Ecol. Manag. 256: 1760–1770.

    Article  Google Scholar 

  34. Scheidegger, C, U. Groner, C. Keller and S. Stofer. 2002. Biodiversity assessment tools - lichens. In: P.L. Nimis, C. Scheidegger and P.A. Wolseley (eds.), Monitoring with Lichens - Monitoring Lichens. Kluwer, Dordrecht. pp. 359–365.

    Google Scholar 

  35. Stofer, S., V. Catalayud, M. Ferretti, R. Fischer, P. Giordani, C. Keller, N. Stapper and C. Scheidegger. 2003. Epiphytic lichen monitoring within the EU/ICP Forests Biodiversity Test-Phase on Level II plots. Available from: www.forestbiota.org.

  36. Stohlgren, T.J. 2007. Measuring Plant Diversity: Lessons from the Field. Oxford Univ. Press, New York.

    Google Scholar 

  37. Thormann, M.N. 2006. Lichens as indicators of forest health in Canada. Forest. Chron. 82: 335–343.

    Article  Google Scholar 

  38. Wagner, H.H. 2003. Spatial covariance in plant communities: integrating ordination, geostatistics, and variance testing. Ecology 84: 1045–1057.

    Article  Google Scholar 

  39. Will-Wolf, S. 2002. Monitoring regional status and trends in forest health with lichen communities: the United States Forest Service approach. In: P.L. Nimis, C. Scheidegger and P.A. Wolseley (eds.), Monitoring with Lichens - Monitoring Lichens. Kluwer, Dordrecht. pp. 353–357.

    Google Scholar 

  40. Will-Wolf, S., P.A. Esseen and P. Neitlich. 2002. Monitoring biodiversity and ecosystem function: forests. In: P.L. Nimis, C. Scheidegger and P.A. Wolseley (eds.), Monitoring with Lichens - Monitoring Lichens. Kluwer, Dordrecht. pp. 203–222.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Bacaro.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Nascimbene, J., Marini, L., Bacaro, G. et al. Effect of reduction in sampling effort for monitoring epiphytic lichen diversity in forests. COMMUNITY ECOLOGY 11, 250–256 (2010). https://doi.org/10.1556/ComEc.11.2010.2.14

Download citation

Keywords

  • Forest monitoring
  • Lichen diversity
  • Rarefaction curves
  • Sampling efficiency
  • Species richness