Tourism disassembles patterns of co-occurrence and weakens responses to environmental conditions of spider communities on small lake islands

Abstract

The impact of disturbance on animal and plant assemblages has been described mainly in terms of aggregate community properties like species richness, abundance, or productivity. However, the question how disturbance acts on species interactions, particularly on patterns of co-occurrence, has received much less attention. Here we use a large pitfall trap sample of spiders from two complexes of lake islands in Northern Poland to show how disturbance by tourist visits affects species richness, composition and co-occurrence. On the pristine and protected islands of Lake Wigry, species co-occurrence was significantly segregated. Further, island species richness and abundances could be predicted from environmental correlates, particularly from island area, soil fertility and humidity. In turn, on the lake islands that are frequently visited by tourists, species co-occurrences were random and environmental correlates other than island area failed to predict species richness and abundances. However, species composition, α-, β-, and γ-diversities, as well as average local spider abundances did not significantly differ between both island complexes. Our results show that disturbance disassembles the structure of spider communities prior to visible richness and abundance effects. This result has implications for biological conservation. The detection of community disassembly might be an early sign for factors that act negatively on ecosystem functioning.

Abbreviations

NBM:

Nidzkie, Bełdany and Mikolajski lake complex

NMDS:

Non-metric multidimensional scaling

PCA:

Principal component analysis

SAR:

Species - area relationship.

References

  1. Batáry, P., A. Báldi, F. Samu, T. Szűts and S. Erdős. 2008. Are spiders reacting to local or landscape scale effects in Hungarian pastures? Biol. Conserv. 141: 2062–2070.

    Article  Google Scholar 

  2. Beals, M. L. 2006. Understanding community structure: a data-driven multivariate approach. Oecologia 150: 484–495.

    Article  Google Scholar 

  3. Begon, M., C. R. Townsend and J. L. Harper. 2006. Ecology. From Individuals to Ecosystems. Blackwell, Oxford.

    Google Scholar 

  4. Bhat, A. and A. E. Magurran. 2007. Does disturbance affect the structure of tropical fish assemblages? A test using null models. J. Fish Biol. 70: 623–629.

    Article  Google Scholar 

  5. Bonte, D.,L. Baet and J.-P. Maelfait. 2002. Spider assemblage structure and stability in a heterogeneous coastal dune system (Belgium). J. Arachnol. 30: 331–343.

    Article  Google Scholar 

  6. Buddle, C. M., D. W. Langor, G. R. Pohl and J. R. Spence. 2006. Arthropod responses to harvesting and wildfire: implications for emulation of natural disturbance in forest management. Biol. Conserv. 128: 346–357.

    Article  Google Scholar 

  7. Bunge J. and M. Fitzpatrick. 1993. Estimating the number of species: A review. J. Am. Stat. Ass. 88: 364–373.

    Google Scholar 

  8. Chase, J. M. and M. A. Leibold. 2003. Ecological Niches. Chicago, Univ. Press, Chicago.

    Book  Google Scholar 

  9. Chen, K.-C. and I.-M. Tso. 2004. Spider diversity on Orchid island, Taiwan: A comparison between habitats receiving different degrees of human disturbance. Zool. Stud. 43: 598–611.

    Google Scholar 

  10. Chesson,P. and J. J. Kuang. 2008. The interaction between predation and competition. Nature 456: 235–238.

    Article  CAS  Google Scholar 

  11. Christ, C., O Hillel, L. Matus and J. Sweeting. 2003. Tourism and Biodiversity. Conservation International, Washington.

    Google Scholar 

  12. Clough, Y., A. Kruess, D. Kleijn and T. Tscharntke. 2005. Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. J. Biogeogr. 32: 2007–2014.

    Article  Google Scholar 

  13. Costa de Azevedo, M. C., F. Araujo, A. Pessanha and M. Silva. 2006. Co-occurrence of demersal fishes in a tropical bay in southeastern Brazil: A null model analysis. Estuar Coastal Shelf Science 66: 315–322.

    Article  Google Scholar 

  14. Death, R. G. 2005. Predicting invertebrate diversity from disturbance regimes in forest streams. Oikos 97: 18–30.

    Article  Google Scholar 

  15. Diamond, M. 1975. Assembly of species communities. In: M . L. Cody and J. M. Diamond (Eds.), Ecology and Evolution of Communities. Belknap, Harvard, pp. 342–444.

    Google Scholar 

  16. Dormann, C. F. 2007. Promising the future? Global change projections of species distributions. Basic Appl. Ecol. 8: 387–397.

    Article  Google Scholar 

  17. Diekötter, T., Dirksen, J., Durka, W., Edwards, P.J., Frenzel, M., Hamersky, R., Hendrickx, F., Herzog, F., Klotz, S., Koolstra, B., Lausch, A., Le Coeur, D., Liira, J., Maelfait, J.P., Opdam, P., Roubalova, M., Schermann-Legionnet, A., Schermann, N., Schmidt, T., Smulders, M.J., Speelmans, M., Simova, P., Ver-boom, J., van Wingerden, W. and Zobel, M. 2008. Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecol. Lett. 11: 235–244.

    Article  Google Scholar 

  18. Dzwonko, Z. 2001. Effect of proximity to ancient deciduous woodland on restoration of the field layer vegetation in a pine plantation. Ecography 24: 198–204.

    Article  Google Scholar 

  19. Ellenberg, H., H. E. Weber, R. Düll, V. Wirth and W. Werner. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1–258.

    Google Scholar 

  20. Finch, O.-D., T. Blick and A. Schuldt. 2008. Macroecological patterns of spider species richness across Europe. Biodiv. Conserv. 17: 2849–2868.

    Article  Google Scholar 

  21. Gillette, N. E., R. S. Vetter, S. R. Mori, C. R. Rudolph and D. R. Welty. 2008. Response of ground-dwelling spider assemblages to prescribed fire following stand structure manipulation in the southern Cascade Range. Can. J. Forest Res. 38: 969–980.

    Article  Google Scholar 

  22. Gotelli, N. J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.

    Google Scholar 

  23. Gotelli, N. J. and A. E. Arnett. 2000. Biogeographic effects of red fire ant invasion. Ecol. Lett. 3: 257–261.

    Article  Google Scholar 

  24. Gotelli, N. J. and D. J. McCabe. 2002. Species co-occurrence: a meta-analysis of J.M. Diamond’s assembly rules model. Ecology 83: 2091–2096.

    Google Scholar 

  25. Gotelli, N. J.and G.R. Graves. 1996. Null Models in Ecology. Smithsonian Inst. Press, Washington.

    Google Scholar 

  26. Gotelli, N. J. and W. Ulrich 2009. The Empirical Bayes approach as a tool to identify non-random species associations. Oecologia, in press.

  27. Graham, M. H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809–2815.

    Article  Google Scholar 

  28. Hsieh, Y. L., Y.-S. Lin and I.-M. Tsao. 2003. Ground spider diversity in a Kenting uplifted coral forest reef forest, Taiwan: a comparison between habitats receiving various disturbances. Biodiv. Conserv. 112: 2173–2194.

    Article  Google Scholar 

  29. Hutchinson, G. E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? Am. Nat. 93: 145–159.

    Article  Google Scholar 

  30. Ives, A. R. and S. R. Carpenter. 2007. Stability and diversity of ecosystems. Science 317: 58–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jimènez-Valverde, A. and J. M. Lobo. 2007. Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol. En-tomol. 32: 113–122.

    Article  Google Scholar 

  32. Jung, M.-P. 2008. Species diversity and community structure of ground dwelling spiders in unpolluted and moderately heavy metal-polluted habitats. Water Air Soil Poll. 195: 15–22.

    Article  CAS  Google Scholar 

  33. Laiolo, P. 2004. Diversity and the structure of the bird community in the Himalayan subalpine zone: is conservation compatible with tourism? Biol. Conserv. 115: 251–262.

    Article  Google Scholar 

  34. Larrivee, M., L. Fahrig and P. Drapeau. 2005. Effects of a recent wildfire and clearcuts on ground-dwelling boreal forest spider assemblages. Can. J. Forest Res. 35: 2575–2588.

    Article  Google Scholar 

  35. Lichstein, J. W., T. R. Simons, S. A. Shriner and K. E. Franzreb. 2002. Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72: 445–463.

    Article  Google Scholar 

  36. Loreau, M., S. Naeem and P. Inchausti (eds.) (2002). Biodiversity and Ecosystem Functioning: Synthesis and Perspectives. Oxford, Univ. Press.

    Google Scholar 

  37. Loreau, M., N. Mouquet and A. Gonzalez. 2003. Biodiversity and spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Science USA 100: 12765–12770.

    Article  CAS  Google Scholar 

  38. Mackey, R. L. and D. J. Currie. 2001. The diversity-disturbance relationship: is it generally strong and peaked? Ecology 82: 3479–3492.

    Google Scholar 

  39. Matveinen-Huju, K. and M. Koivula. 2008. Effects of alternative harvesting methods on boreal forest spider assemblages. Can. J. Forest Res. 38:782–794.

    Article  Google Scholar 

  40. Mądrzejowska, K., and,J. Sklodowski. 2008. Assemblages of carabid beetles (Coleoptera: Carabidae) as zoo-indicator of water tourism impact on forest-lake ecotones. Baltic J. Coleopterol 8:1–14.

    Google Scholar 

  41. Menge, B. A. and J. P. Sutherland. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130: 730–757.

    Article  Google Scholar 

  42. Platnick, N. I. 2009. The World Spider Catalog, version 9.5. American Museum of Natural History. https://doi.org/research.amnh.org/entomology/spiders/catalog/INTRO3.html.

  43. Rangel, T. F. L., J. A. F. Diniz-Filho and L. M. Bini. 2006. Towards an integrated computational tool for spatial analysis in macroe-cology andbiogeography. Glob. Ecol. Biogeogr. 15: 321–327.

    Article  Google Scholar 

  44. Reaser, J. K., L. A. Meyerson, Q. Cronk, M. De Poorter, L. G. Eldrege, E. Green., M. Kairo, P. Latasi, R. N. Mack, J. Mauremootoo, D. O’Dowd, W. Orapa, S. Sastroutomo, A. Sauners, C. Shine, S. Thrainsson and L. Vaiutu. 2007. Ecological and socioeconomic impacts of invasive alien species in island ecosystems. Env. Conserv. 34: 98–111.

    Article  Google Scholar 

  45. Rehage, J. S. and J. C. Trexler. 2006. Assessing the net effect of anthropogenic disturbance on aquatic communities in wetlands: community structure relative to distance from canals. Hydro-biol. 569: 359–373.

    Article  Google Scholar 

  46. Rypstra, A. L., P. E. Carter, R. A. Balfour and S. D. Marshall. 1999. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27: 371–377.

    Google Scholar 

  47. Sanders, N. J., N. J. Gotelli, N. E. Heller and D. M. Gordon. 2003. Community disassembly by an invasive species. Proc. Natl. Acad. Science USA 100: 2474–2477.

    Article  CAS  Google Scholar 

  48. Sanders, N. J., N. J. Gotelli, S. I. Wittman, J. S. Ratchford, A. M. Ellison and E. S. Jules. 2007. Assembly rules of ground-foraging ant assemblages are contingent on disturbance, habitat and spatial scale. J. Biogeogr. 34: 1632–1641.

    Article  Google Scholar 

  49. Sarà, M., E. Bellia and A. Milazzo. 2006. Fire disturbance disrupts co-occurrence patterns of terrestrial vertebrates in Mediterranean woodlands. J. Biogeogr. 33: 843–852.

    Article  Google Scholar 

  50. Schaffers, A. P. and K. V. Sykora. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci. 11: 225–244.

    Article  Google Scholar 

  51. Scheffler, P. Y. 2005. Dung beetle (Coleoptera: Scarabaeidae) diversity and community structure across three disturbance regimes in eastern Amazonia. J. Trop. Ecol. 21: 9–19.

    Article  Google Scholar 

  52. Schmidt, M. H, I. Roschewitz, C. Thies and T. Tscharntke. 2005. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 42: 281–287.

    Article  Google Scholar 

  53. Schmidt, M. H, C. Thies, W. Nentwig and T. Tscharntke. 2008. Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J. Biogeogr. 35: 157–166.

    Google Scholar 

  54. Shea, K., S. H. Roxburgh and E. S. J. Rauschert. 2004. Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecol. Lett. 7: 491–508.

    Article  Google Scholar 

  55. Skłodowski, J., J. Sater and T. Strzyżewski. 2006. Impact of water tourism activity in forest/waterside ecotones on the example of the Bełdany Lake. Sylwan 10: 65–71 (in Polish).

    Google Scholar 

  56. Stone, L. and A. Roberts. 1990. The checkerboard score and species distributions. Oecologia 85: 74–79.

    Article  Google Scholar 

  57. Stone, L. and A. Roberts. 1992. Competitive exclusion or species aggregation? An aid in deciding. Oecologia 91: 419–424.

    Article  Google Scholar 

  58. Taylor, C. M., T. L. Holder, R. A. Fiorillo, R. A. Williams, R. B. Thomas and M. L. Warren Jr. 2006. Distribution, abundance, and diversity of stream fishes under variable environmental conditions. Can. J. Fish. Aquat. Sci. 63: 43–54.

    Article  Google Scholar 

  59. Tylianakis, J. M., T. Tscharntke and A.-M. Klein. 2006. Diversity, ecosystem functioning, and stability of parasitoid –host interactions across a tropical habitat gradient. Ecology 87: 3047–3057.

    Article  Google Scholar 

  60. Ulrich, W. 2004. Species co-occurrences and neutral models: reassessing J. M. Diamond’s assembly rules. Oikos 107: 603–609.

    Article  Google Scholar 

  61. Ulrich, W. 2006. CoOccurrence - a Fortran program for species co-occurrence analysis. https://doi.org/www.uni.torun.pl/~ulrichw.

  62. Ulrich, W. 2008. Pairs – a Fortran program for studying pair wise species associations in ecological matrices. https://doi.org/www.uni.torun.pl/~ulrichw.

  63. Ulrich W. and N. J. Gotelli. 2007. Disentangling community patterns of nestedness and species co-occurrence. Oikos 116: 2053–2061.

    Article  Google Scholar 

  64. Ulrich W., Zalewski M. and K. Komosiński. 2007. Diversity of carrion visiting beetles at rural and urban sites. Community Ecol. 8: 171–181.

    Article  Google Scholar 

  65. Wilbur, H. M. 1987. Regulation of structure in complex systems: experimental temporary pond communities. Ecology 68: 1437–1452.

    Article  Google Scholar 

  66. Wilkinson, D. M. 1999. The disturbing history of intermediate disturbance. Oikos 84: 145–147.

    Article  Google Scholar 

  67. Witman, J. D. 1992. Physical disturbance and community structure of exposed and protected reefs: a case study from St. John, U.S. Virgin Islands. Am. Zool. 32: 641–654.

    Article  Google Scholar 

  68. Zalewski, M. and W. Ulrich. 2006. Dispersal as a key element of community structure: The case of ground beetles on lake islands. Divers. Distrib. 12: 767–775.

    Article  Google Scholar 

  69. Zarzycki, K., H. Trzcińska-Tacik, W. Różański, Z. Szelag, J. Wołek and U. Korzeniak. 2002. Ecological Indicator Values of Vascular Plants of Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. Ulrich.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Ulrich, W., Zalewski, M., Hajdamowicz, I. et al. Tourism disassembles patterns of co-occurrence and weakens responses to environmental conditions of spider communities on small lake islands. COMMUNITY ECOLOGY 11, 5–12 (2010). https://doi.org/10.1556/ComEc.11.2010.1.2

Download citation

Keywords

  • Araneae
  • Community structure
  • Co-occurrence
  • C-score
  • Disturbance
  • Mazurian Lakes
  • Species richness