Modelling the spatial distribution of tree species with fragmented populations from abundance data

Abstract

Spatial distribution modelling can be a useful tool for elaborating conservation strategies for tree species characterized by fragmented and sparse populations. We tested five statistical models—Support Vector Regression (SVR), Multivariate Adaptive Regression Splines (MARS), Gaussian processes with radial basis kernel functions (GP), Regression Tree Analysis (RTA) and Random Forests (RF)—for their predictive performances. To perform the evaluation, we applied these techniques to three tree species for which conservation measures should be elaborated and implemented: one Mediterranean species (Quercus suber) and two temperate species (Ilex aquifolium and Taxus baccata). Model evaluation was measured by MSE, Goodman-Kruskal and sensitivity statistics and map outputs based on the minimal predicted area criterion. All the models performed well, confirming the validity of this approach when dealing with species characterized by narrow and specialized niches and when adequate data (more than 40–50 samples) and environmental and climatic variables, recognized as important determinants of plant distribution patterns, are available. Based on the evaluation processes, RF resulted the most accurate algorithm thanks to bootstrap-resampling, trees averaging, randomization of predictors and smoother response surface.

Abbreviations

GP:

Gaussian processes with radial basis kernel functions

IV:

Importance Value

MARS:

Multivariate Adaptive Regression Splines

RF:

Random Forests

RTA:

Regression Tree Analysis

SVR:

Support Vector Regression

References

  1. Araújo, M. B. and A. Guisan. 2006. Five (or so) challenges for species distribution modeling. J. Biogeogr. 33: 1677–1688.

    Article  Google Scholar 

  2. Araújo, M. B. and M. New. 2007. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22(1): 42–47.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Attorre, F., M. Alfò, M. De Sanctis, F. Francesconi and F. Bruno. 2007a. Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. International J. Climatol. 27: 1825–1843.

    Article  Google Scholar 

  4. Attorre, F., F. Francesconi, N. Taleb, P. Scholte, A. Saed, M. Alfo and F. Bruno. 2007b. Will dragonblood survive the next period of climate change? Current and future potential distribution of Dracaena cinnabari (Socotra, Yemen). Biol. Conserv. 138: 430–439.

    Google Scholar 

  5. Beaumont, L.J., L. Hughes, and M. Poulsen. 2005. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186: 250–269.

    Article  Google Scholar 

  6. Benito Garzòn, M., R. Blazek, M. Neteler, R. Sánchez de Dios, H. Sainz Ollero and C. Furlanello. 2006. Machine learning models for predicting species habitat distribution suitability: An example with Pinus sylvestris L. for the Iberian Peninsula. Ecol. Model. 197: 383–393.

    Article  Google Scholar 

  7. Benito Garzòn, M., R. Sánchez de Dios and H. Sainz Ollero. 2008. Effects of climate change on the distribution of Iberian tree species. Appl. Veg. Sci. 11: 169–178.

    Article  Google Scholar 

  8. Breiman, L. 2001. Random forests. Machine Learning 45: 5–32.

    Article  Google Scholar 

  9. Breiman, L., J. H. Friedman, R. A. Olshen and C. J. Stone. 1984. Classification and Regression Trees. Wadsworth, Belmont, CA.

    Google Scholar 

  10. Chefaoui, R.M. and J.M. Lobo. 2008. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol. Model. 210: 478–486.

    Article  Google Scholar 

  11. Drake, J.M., C. Randin and A. Guisan. 2006. Modelling ecological niches with support vector machines. J. Appl. Ecol. 43: 424–432.

    Article  Google Scholar 

  12. Drucker, H., C.J.C. Burges, L. Kaufman, A. Smola and V. Vapnik. 1997. Support Vector Regression Machines. Advances in Neural Information Processing Systems 9, NIPS 1996, pp. 155–161.

    Google Scholar 

  13. Elith, J., M.A. Burgman and H.M. Regan. 2002. Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecol. Model. 157: 313–330.

    Article  Google Scholar 

  14. Elith, J., C. H. Graham, R. P. Anderson, M. Dudýk, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. McC. Overton, A. Townsend Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberòn, S. Williams, M. S. Wisz and N.E. Zimmermann. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.

    Article  Google Scholar 

  15. Elith, J. and J. Leathwick. 2007. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers. Distrib. 13: 265–275.

    Article  Google Scholar 

  16. Engler, R., A. Guisan and L. Rechsteiner. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 41: 263–274.

    Article  Google Scholar 

  17. Farber, O. and R. Kadmon. 2003. Assessment of alternative approaches for bioclimatic modelling with special emphasis on the Mahalanobis distance. Ecol. Model. 160: 115–130.

    Article  CAS  Google Scholar 

  18. Friedman, J. 1991. Multivariate adaptive regression splines. Ann. Stat. 19: 1–141

    Article  Google Scholar 

  19. Guisan, A. and N. E. Zimmerman. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135: 147–186.

    Article  Google Scholar 

  20. Guisan A., T.C. Edwards and T. Hastie. 2002. Generalized linear and generalized additive models in studies of species distribution: setting the scene. Ecol. Model. 157: 89–100.

    Google Scholar 

  21. Guisan, A. and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8: 993–1009.

    Article  Google Scholar 

  22. Guisan, A., O. Broennimann, R. Engler, M. Vust, N.G. Yoccoz, A. Lehmann and N.E. Zimmermann. 2006. Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20: 501–511.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guisan, A., N. E. Zimmermann, J. Elith, C. H. Graham, S. Phillips and A. T. Peterson. 2007. What matters for predicting the occurrences of trees: techniques, data or species characteristics? Ecol. Monogr. 77: 615–630.

    Article  Google Scholar 

  24. Guo, Q., M. Kelly and C. H. Graham. 2005. Support vector machines for predicting distribution of Sudden Oak Death in California. Ecol. Model. 182: 75–90.

    Article  Google Scholar 

  25. Hastie, T., R. Tibshirani, and J. Friedman. 2001. The Elements of Statistical Learning. Springer, New York.

    Book  Google Scholar 

  26. Hernandez, P. A., C.H. Graham, L.L. Master and D. L. Albert. 2006. The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29: 773–785.

    Article  Google Scholar 

  27. Hidalgo, P.J., M.J. Marìn, J. Quiijada and J.M. Moreira. 2008. A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. Forest Ecol. Manage. 255: 25–34.

    Article  Google Scholar 

  28. Hirzel, A. H., J. Hausser, D. Chessel and N. Perrin. 2002. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83: 2027–2036.

    Article  Google Scholar 

  29. Iverson, L.R. and A.M. Prasad. 1998. Predicting abundance of 80 tree species following climate change in the Eastern United States. Ecol. Monogr. 68: 465–485.

    Article  Google Scholar 

  30. Iverson, L.R. and A.M. Prasad. 2002. Potential redistribution of tree species habitat under five climate change scenarios in the Eastern United States. Forest Ecol. Manage. 155: 205–222.

    Article  Google Scholar 

  31. Iverson, L.R., A.M. Prasad and M.K. Schwartz. 1999. Modelling potential future individual tree species distributions in the Eastern United States under a climate change scenario: a case study with Pinus virginiana. Ecol. Model. 115: 77–93.

    Article  Google Scholar 

  32. Leathwick, J. R., D. Rowe, J. Richardson, J. Elith and T. Hastie. 2005. Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshwater Biol. 50: 2034–2052.

    Article  Google Scholar 

  33. Lehmann, A., J. M. Overton and M. P. Austin. 2002. Regression models for spatial prediction: their role for biodiversity and conservation. Biodivers. Conserv. 11: 2085–2092.

    Article  Google Scholar 

  34. Luoto, M., J. Pöyry, R. K. Heikkinen and K. Saarinen. 2005. Uncertainty of bioclimate envelope models based on the geographical distribution of species. Global Ecol. Biogeogr. 14: 575–584.

    Article  Google Scholar 

  35. Magri, D., G. G. Vendramin, B. Comps, I. Dupanloup, T. Geburek, D. Gomory, M. Latalowa, T. Litt, L. Paule, J. M. Roure, I. Tantau, W. O. Van der Knaap, R. J. Petit and J. L. De Beaulieu. 2006. A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol. 171: 199–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Müller, K. R., S. Mika, G. Rätsch, K. Tsuda. and B.Schölkopf. 2001. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks 12: 181–202.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pearce, J. and M. Boyce. 2006. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 43: 405–412.

    Article  Google Scholar 

  38. Pearson, R.G., T.P. Dawson, P.M. Berry and P.A. Harrison. 2002. SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecol. Model. 154: 289–300.

    Article  Google Scholar 

  39. Peterson, A.T., V. Sanchez-Cordero, J. Soberòn, J. Bartley, R. W. Buddemeier and A. G. Navarro-Sigüenza. 2001. Effects of global climate change on geographic distributions of Mexican Cracidae. Ecol. Model. 144: 21–30.

    Article  Google Scholar 

  40. Peterson, A.T., M.A. Ortega-Huerta, Bartley J. V. Sánchez-Cordero, J. Soberón, R. H. Buddemeier and D. R. B. Stockwell. 2002. Future projections for Mexican faunas under global climate change scenarios. Nature 416: 626–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prasad, A. M., L. R. Iverson and A. Liaw. 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9: 181–199.

    Article  Google Scholar 

  42. Recknagel, F. 2001. Applications of machine learning to ecological modelling. Ecol. Model. 146: 303–310.

    Article  Google Scholar 

  43. Rouget, M., D. M. Richardson, J. L. Nel, D. C. Le Maitre, B. Egoh and T. Mgidi. 2004. Mapping the potential ranges of major plant invaders in South Africa, Lesotho and Swaziland using climatic suitability. Divers. Distrib. 10: 475–484.

    Article  Google Scholar 

  44. Scarnati, L., F. Attorre, M. De Sanctis, A. Farcomeni, F. Francesconi, M. Mancini and F. Bruno. 2009. A multiple approach for the evaluation of the spatial distribution and dynamics of a forest habitat: the case of Apennine beech forests with Taxus baccata and Ilex aquifolium. Biodivers. Conserv. Doi: 10.1007/s10531-009-9629-z

  45. Segurado, P. and M. B. Araujo. 2004. An evaluation of methods for modelling species distributions. J. Biogeogr. 31: 1555–1568.

    Article  Google Scholar 

  46. Thuiller, W. 2003. BIOMOD – Optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biol. 9: 1353–1362.

    Article  Google Scholar 

  47. Thuiller, W., J. Vayreda, J. Pino, S. Sabate, S. Lavorel and C.Gracia. 2003. Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecol. Biogeogr. 12: 313–325.

    Article  Google Scholar 

  48. Thuiller, W., S. Lavorel, G.F. Midgley, S. Lavergne and A.G. Rebelo. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron species in the Cape Floristic Region. Ecology 85: 1688–1699.

    Article  Google Scholar 

  49. Tsoar, A., O. Allouche, O. Steinitz, D. Rotem and R. Kadmon. 2007. A comparative evaluation of presence only methods for modelling species distribution. Divers. Distrib. 13: 397–405.

    Article  Google Scholar 

  50. Vayssieres, M.P., R.E. Richard and B.H. Allen-Diaz. 2000. Classification trees: an alternative non-parametric approach for predicting species distribution. J. Veg. Sci. 11: 679–694.

    Article  Google Scholar 

  51. Ward, G., T. Hastie, S. Barry, J. Elith, and J. Leathwick. 2009. Presence-only data and the EM algorithm. Biometrics 65: 554–563.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Williams, C. K. I. and D. Barber. 1998: Bayesian classification with Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 20: 1342–1351.

    Article  Google Scholar 

  53. Zaniewski, A.E., A. Lehmann and J. Overton. 2002. Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol. Model. 157: 261–280.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Attorre.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Scarnati, L., Attorre, F., Farcomeni, A. et al. Modelling the spatial distribution of tree species with fragmented populations from abundance data. COMMUNITY ECOLOGY 10, 215–224 (2009). https://doi.org/10.1556/ComEc.10.2009.2.12

Download citation

Keywords

  • Ilex aquifolium
  • Gaussian processes with radial basis kernel functions
  • Multivariate adaptive regression splines
  • Potential areas
  • Random forest
  • Regression tree analysis
  • Quercus suber
  • Spatial modelling
  • Support vector regression
  • Taxus baccata