A comparison of three indirect methods for estimating understory light at different spatial scales in temperate mixed forests

Abstract

Three indirect light measurement methods were compared in mixed deciduous and coniferous forests with heterogeneous stand structure: tRAYci - a spatially explicit light model calculating percentage of above canopy light (PACL); LAI-2000 Plant Canopy Analyzer measuring diffuse non-interceptance (DIFN); and spherical densiometer estimating canopy openness (CO). Correlations between the different light variables were analyzed at several spatial scales (at 5 × 5, 10 × 10, 15 × 15, 20 × 20 and 30 × 30 m2). Relationships between light variables and the cover of alight flexible plant, blackberry (Rubus fruticosus agg.), as a potentially sensitive response variable for light conditions were also investigated. LAI-2000 (D1FN) and tRAYci (PACL) seemed the most appropriate for the description of the light environment in the investigated stands. DIFN and PACL had stronger correlations with each other and with blackberry cover than CO. Spatial heterogeneity of light (expressed with coefficient of variation) showed much stronger correlations than mean values both between the methods and between light intensity and Rubus cover. The correlation values between the methods increased towards coarser scales (from 5 × 5 to 30 × 30 m2), while the correlation between light intensity and blackberry cover had a maximal response at the scale of 20 ×20 m2 if a lower resolution of light estimation was used, and had also a maximum at smaller scales if the light was calculated for more points per plot by tRAYci. LAI-2000 can be recommended for the comparison of different stands, however, for fine scale description of light conditions of a stand tRAYci seems to be more appropriate.

Abbreviations

DIFN:

Diffuse Non-interceptance

CO:

Canopy Openness

DBH:

Diameter at Breast Height

LAD:

Leaf Area Density

PACL:

Percentage of the Above Canopy Light

References

  1. Anderson, M.C. 1964. Studies of the woodland light climate I. The photographic computation of light conditions. J. Ecol. 52: 27–41.

    Article  Google Scholar 

  2. Anderson, M.C. 1966. Stand structure and light penetration II. A theoretical analysis. J. App. Ecol. 3: 41–54.

    Article  Google Scholar 

  3. Bellow, J.G. and P.K.R. Nair. 2003. Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agric. Forest Meteor. 114: 197–211.

    Article  Google Scholar 

  4. Brown, N., S. Jennings, P. Wheeler and J. Nabe-Nielsen. 2000. An improved method for the rapid assessment of forest understorey light environments. J. App. Ecol. 37: 1044–1053.

    Article  Google Scholar 

  5. Brunner, A. 1998. A light model for spatially explicit forest stand models. Forest Ecol. Manage. 107: 19–46.

    Article  Google Scholar 

  6. Brunner, A. 2004. tRAYci - A light calculation program for spatially explicit forest stand models. User’s Manual, Danish Centre for Forest, Landscape and Planning, KLV, Hørsholm, Denmark.

    Google Scholar 

  7. Brunner, A., D.B. Manning, J. Huss, D. Rozenbergar, J. Diaci, F. Schousboe and L.W. Hansen 2004. Scenarios of regeneration and stand production of beech under different silvicultural regimes with Regenerator. NAT-MAN Working Report 47.

  8. Canham, C.D. and P.L. Marks. 1985. The response of woody plants to disturbance: patterns of establishment and growth. In: Pickett, S.T.A. and P.S. White (eds.): The Ecology of Natural Disturbance and Patch Dynamics. Academic Press Inc., Orlando. pp. 197–216.

    Google Scholar 

  9. Cescatti, A. 1997a. Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms. Ecol. Model. 101: 263–274.

    Article  Google Scholar 

  10. Cescatti, A. 1997b. Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. II. Model testing and application in a Norway spruce stand. Ecol. Model. 101: 275–284.

    Article  Google Scholar 

  11. Chazdon, R.L. and C.B. Field. 1987. Photographic estimation of photosynthetically active Radiation - Evaluation of a computerized technique. Oecologia 73: 525–532.

    Article  CAS  Google Scholar 

  12. Coates, K.D., C.D. Canham, M. Beaudet, D.L. Sachs and C. Messier. 2003. Use of a spatially explicit individual-tree model (SOR-TIE/BC) to explore the implications of patchiness in structurally complex forests. Forest Ecol. Manage. 186: 297–310.

    Article  Google Scholar 

  13. Collins, B.S., K.P. Dunne and S.T.A. Pickett. 1985. Responses of forest herbs to canopy gaps. In: Pickett, S.T.A. (ed.): The Ecology of Natural Disturbance and Patch Dynamics. Academic Press Inc., Orlando. pp. 218–234.

    Google Scholar 

  14. Comeau, P.G. 2000. Measuring Light in the Forest. Extension Note 42, British Columbia Ministry of Forests, Victoria.

    Google Scholar 

  15. Comeau, P., R. Macdonald, R. Bryce and B. Groves. 1998a. Lite: a model for estimating light interception and transmission through forest canopies, users manual and program documentation. Research Branch, Ministry of Forests, Victoria, B.C. Working Paper 35/1998.

    Google Scholar 

  16. Comeau, P.G., F. Gendron and T. Letchford. 1998b. A comparison of several methods for estimating light under a paper birch mixedwood stands. Can. J. Forest Res. 28: 1843–1850.

    Article  Google Scholar 

  17. Comeau, P.G. and J.L. Heineman. 2003. Predicting understory light microclimate from stand parameters in young paper birch (Betula papyrifera Marsh.) stands. Forest Ecol. Manage. 180: 303–315.

    Article  Google Scholar 

  18. Constabel, A.J. and V.J. Lieffers. 1996. Seasonal patterns of light transmission through boreal mixedwood canopies. Can. J. Forest Res. 26: 1008–1014.

    Article  Google Scholar 

  19. Emborg, J. 1998. Undestorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. Forest Ecol. Manage. 106: 83–95.

    Article  Google Scholar 

  20. Engelbrecht, B.M.J. and H.M. Herz. 2001. Evaluation of different methods to estimate understorey light conditions in tropical forests. J. Trop. Ecol. 17: 207–224.

    Article  Google Scholar 

  21. Englund, S.R., J.J. O’Brien and D.B. Clark. 2000. Evaluation of digital and film hemispherical photography and spherical densiometry for measuring forest light environments. Can. J. Forest Res. 30: 1999–2005.

    Article  Google Scholar 

  22. Ferment, A., N. Picard, S. Gourlet-Fleury and Ch. Baraloto. 2001. A comparison of five indirect methods for characterizing the light environment in a tropical forest. Ann. Forest Sci. 58: 877–891.

    Article  Google Scholar 

  23. Fotelli, M.N., P. Rudolph, H. Rennenberg and A. Gessler. 2005. Irradiance and temperature affect the competitive interference of blackberry on the physiology of European beech seedlings. New Phytol. 165: 453–462.

    Article  Google Scholar 

  24. Frazer, G.W., R.A. Fournier, J.A. Trofymow and R.J. Hall. 2001. A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric. Forest Meteor. 109: 249–263.

    Article  Google Scholar 

  25. Gálhidy, L., B. Mihók, A. Hagyó, K. Rajkai and T. Standovár. 2006. Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest. Plant Ecol. 183: 133–145.

    Article  Google Scholar 

  26. Gendron, F., C. Messier and P.G. Comeau. 1998. Comparison of various methods for estimating the mean growing season percent photosynthetic photon flux density in forests. Agric. Forest Meteor. 92: 55–70.

    Article  Google Scholar 

  27. Gersonde, R., J.J. Battles and K.L. O’Hara. 2004. Characterizing the light environment in Sierra Nevada mixed-conifer forests using a spatially explicit light model. Can. J. Forest Res. 34: 1332–1342.

    Article  Google Scholar 

  28. Hale, S.E. 2003. The effect of thinning intensity on the below-canopy light environment in a Sitka spruce plantation. Forest Ecol. Manage. 179: 341–349.

    Article  Google Scholar 

  29. Hale, S.E. and C. Edwards. 2002. Comparison of film and digital hemispherical photography across a wide range of canopy densities. Agric. Forest Meteor. 112: 51–56.

    Article  Google Scholar 

  30. Jelaska, S.D., O. Antonic, M. Bozic, J. Krizan and V. Kusan. 2006. Responses of forest herbs to available understory light measured with hemispherical photographs in silver fir-beech forest in Croatia. Ecol. Model. 194: 209–218.

    Article  Google Scholar 

  31. Ke, G. and M.J.A. Werger. 1999. Different responses to shade of evergreen and deciduous oak seedlings and the effect of acorn size. Acta Oecol. 20: 579–586.

    Article  Google Scholar 

  32. Klimes, L., J. Klimesova, R. Hendriks and J. van Groenendael. 1997. Clonal plant architecture: a comparative analysis of form and function. In: de Kroon, H. and J. van Groenendael (eds.), The ecology and evolution of clonal plants. Backhuys, Leiden. pp. 1–29.

    Google Scholar 

  33. Lalic, B. and D.T. Mihailovic. 2004. An empirical relation describing leaf-area density inside the forest for environmental modeling. J. App. Meteor. 43: 641–645.

    Article  Google Scholar 

  34. Lemmon, P.E. 1956. A spherical densiometer for estimating forest overstory density. Forest Sci. 2: 314–319.

    Google Scholar 

  35. Lemmon, P.E. 1957. A new instrument for measuring forest over-story density. J. Forestry 55: 667–668.

    Google Scholar 

  36. LI-COR Inc. 1990. LAI-2000 Plant Canopy Analyzer. Instruction Manual. LI-COR Inc., Lincoln.

    Google Scholar 

  37. LI-COR Inc. 1991. 1000–90 Communication and utility software for LI-COR Instruments. LI-COR Inc., Lincoln.

    Google Scholar 

  38. LI-COR Inc. 1992. 2000–90 Support software for the LAI-2000 Plant Canopy Analyzer. LI-COR Inc., Lincoln.

    Google Scholar 

  39. MacFarlane, D.W., E.J. Green, A. Brunner and R.L. Amateis. 2003. Modeling loblolly pine canopy dynamics for a light capture model. Forest Ecol. Manage. 173: 145–168.

    Article  Google Scholar 

  40. Machado, J.L. and P.B. Reich. 1999. Evaluation of several measures of canopy openness as predictors of photosynthetic photon flux density in deeply shaded conifer-dominated forest understory. Can. J. Forest Res. 29: 1438–1444.

    Article  Google Scholar 

  41. Marosi, S. and S. Somogyi (eds.) 1990. Magyarország kistájainak katasztere. (Cadastre of Hungarian regions.) MTA Földrajztudományi Kutató Intézet, Budapest.

    Google Scholar 

  42. Martens, S.N., D.D. Breshears and C.W. Meyer. 2000. Spatial distributions of understory light along the grassland/forest continuum: effects of cover, height, and spatial pattern of tree canopies. Ecol. Model. 126: 79–93.

    Article  Google Scholar 

  43. Matthews, J.D. 1991. Silvicultural Systems. Calderon Press, Oxford.

    Google Scholar 

  44. Messier, C. and P. Puttonen. 1995. Spatial and temporal variation in the light environment of developing Scots pine stands - the basis for a quick and efficient method of characterizing light. Can. J. Forest Res. 25:343–354.

    Article  Google Scholar 

  45. Messier, C. and S. Parent. 1997. Reply - The effects of direct-beam light on overcast day estimates of light availability: On the accuracy of the instantaneous one-point overcast-sky conditions method to estimate mean daily%PPFD under heterogeneous overstory canopy conditions. Can. J. Forest Res. 27: 274–275.

    Article  Google Scholar 

  46. Messier, C., S. Parent and Y. Bergeron. 1998. Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests. J. Veg. Sci. 9: 511–520.

    Article  Google Scholar 

  47. Mihók, B. and T. Standovár. 2005. Fénybecslési módszerek összehasonlító vizsgálata az Ipoly Erdő Rt. Királyréti Erdészete által bükkös állományokban létesített mesterséges lékekben. (Comparison of light estimating methods in artificial gaps of beech forest made by the Ipoly Erdő Rt., Forestry of Királyrét.) Working report, Királyrét, Hungary.

  48. Mihók, B., A. Hagyó, T. Standovár, L. Gálhidy and J. Ruff. 2007. Figyeljük a fény játékát - Milyen módszert használjunk erdei állományokban kialakuló lékek fényviszonyainak jellemzésére? (What is the appropriate method to describe the light conditions of forest gaps?) Erdészeti Lapok 142: 156–159.

    Google Scholar 

  49. Mizunaga, H. 2000. Prediction of PPFD variance at forest floor in a thinned Japanese cypress plantation. Forest Ecol. Manage. 126: 309–319.

    Article  Google Scholar 

  50. Mountford, E.P., P.S. Savill and D.P. Bebber. 2006. Patterns of regeneration and ground vegetation associated with canopy gaps in a managed beechwood in southern England. Forestry 79:389–408.

    Article  Google Scholar 

  51. Parent, S. and C. Messier. 1996. A simple and efficient method to estimate microsite light availability under a forest canopy. Can. J. Forest Res. 26: 151–154.

    Article  Google Scholar 

  52. Pinno, B.D., V.J. Lieffers and K.J. Stadt. 2001. Measuring and modelling the crown and light transmission characteristics of juvenile aspen. Can. J. Forest Res. 31: 1930–1939.

    Article  Google Scholar 

  53. Rhoads, A.G., S.P. Hamburg, T.J. Fahey, T.G. Siccama and R. Kobe. 2004. Comparing direct and indirect methods of assessing canopy structure in a northern hardwood forest. Can. J. Forest Res. 34: 584–591.

    Article  Google Scholar 

  54. Roxburgh, J.R. and D. Kelly. 1995. Uses and limitations of hemispherical photography for estimating forest light environments. New Zealand J. Ecol. 19: 213–217.

    Google Scholar 

  55. Silbernagel, J. and M. Moeur. 2001. Modeling canopy openness and understory gap patterns based on image analysis and mapped tree data. Forest Ecol. Manage. 149: 217–233.

    Article  Google Scholar 

  56. SPSS Inc. 2005. SPSS 14.0 for Windows. Release 14.0.0. SPSS Inc.

  57. Stadt, K.J., S.M. Landhausser and J.D. Stewart. 1997. Comment -The effects of direct-beam light on overcast day estimates of light availability. Can. J. Forest Res. 27: 272–274.

    Article  Google Scholar 

  58. Stadt, K.J. and V.J. Lieffers. 2000. MIXLIGHT: a flexible light transmission model for mixed-species forest stands. Agric. Forest Meteor. 102: 235–252.

    Article  Google Scholar 

  59. Tímár, G., P. Ódor and L. Bodonczi. 2002. Az Őrségi Tájvédelmi Körzet erdeinek jellemzése. (The characteristics of forest vegetation of the Őrség Landscape Protected Area.) Kanitzia 10: 109–136.

    Google Scholar 

  60. Tinya, F., S. Márialigeti, I. Király, B. Németh, P. Ódor. 2009. The effect of light conditions on herbs, bryophytes and seedlings of temperate mixed forests in Őrség, Western Hungary. Plant Ecol. DOI 10.1007/s11258-008-9566-z

  61. Tutin, T.G., V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters and D.A. Webb. 1964–1993. Flora Europea. Cambridge University Press, Cambridge.

    Google Scholar 

  62. Valladares, F. and B. Guzman. 2006. Canopy structure and spatial heterogeneity of understory light in an abandoned Holm oak woodland. Ann. Forest Sci. 63: 749–761.

    Article  Google Scholar 

  63. Welles, J.M. 1990. Some indirect methods of estimating canopy structure. Remote Sensing Reviews 5: 31–43.

    Article  Google Scholar 

  64. Welles, J.M. and J.M. Norman. 1991. Instrument for indirect measurement of canopy architecture. Agronomy J. 83: 818–825.

    Article  Google Scholar 

  65. West, D.C., H.H. Shugart andD.B. Botkin. 1981. Forest Succession. Concepts and application. Springer Verlag, New York.

    Book  Google Scholar 

  66. Whigham, D.F. 2004. Ecology of woodland herbs in temperate deciduous forests. Ann. Rev. Ecol. Evol. Syst. 35: 583–621.

    Article  Google Scholar 

  67. Zar, J.H. 1999. Biostatistical Analysis. Prentice Hall, New Jersey.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Ódor.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Tinya, F., Mihók, B., Márialigeti, S. et al. A comparison of three indirect methods for estimating understory light at different spatial scales in temperate mixed forests. COMMUNITY ECOLOGY 10, 81–90 (2009). https://doi.org/10.1556/ComEc.10.2009.1.10

Download citation

Keywords

  • Light model
  • Light-understory interaction
  • Plant canopy analyzer
  • Spatial steps
  • Spherical densiometer