Cereal Research Communications

, Volume 43, Issue 1, pp 133–143 | Cite as

Celiac Disease-Specific Prolamin Peptide Content of Wheat Relatives and Wild Species Determined by ELISA Assays and Bioinformatics Analyses

  • Gy. Gell
  • K. Kovács
  • I. Molnár
  • Zs. Bugyi
  • S. Tömösközi
  • A. JuhászEmail author
Quality and Utilization


Enzyme-linked immunosorbent assays (ELISAs) are widely used to determine gluten contamination in gluten-free and low gluten food samples. ELISA assays developed using monoclonal antibodies against known toxic peptides have an advantage in the identification of toxic prolamin content in protein extracts of different food samples, as well as raw materials. R5 and G12 monoclonal antibodies specific for two known toxic peptides used in commercially available gluten ELISA assays were applied to test toxic peptide contents in wheat relatives and wild wheat species with different genome composition and complexity. Although the R5 peptide content showed some correlation with ploidy levels in Triticum species, there was a high variance among Aegilops species. Some of the analysed diploid Aegilops species showed extremely high R5 peptide contents. Based on the bioinformatics analyses, the R5 peptide was present in most of the sulphur rich prolamins in all the analysed species, whereas the G12 epitope was exclusively present in alpha gliadins. High variation was detected in the position and frequency of epitopes in sequences originating from the same species, thus highlighting the importance of genotypic variation within species. Identification of new prolamin alleles of wheat relatives and wild wheat species is of great importance in order to find germplasm for special end-use quality purposes as well as development of food with reduced toxicity.


ELISA R5 epitope G12 epitope celiac disease cereal species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2015_4301133_MOESM1_ESM.pdf (147 kb)
Supplementary material, approximately 151 KB.


  1. Amano, M., Ogawa, H., Kojima, K., Kamidaira, T., Suetsugu, S., Yoshihama, M., Satoh, T., Samejima, T., Matsumoto, I. 1998. Identification of the major allergens in wheat flour responsible for baker’s asthma. Biochem. J. 330:1229–1234.CrossRefGoogle Scholar
  2. Anderson, R.P., Degano, P., Godkin, A.J., Jewell, D.P., Hill, A.V.S. 2000. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A gliadin T-cell epitope. Nature (Med) 6:337–342.CrossRefGoogle Scholar
  3. Anderson, R.P., Wieser, H. 2006. Medical applications of gluten-composition knowledge. In: Wrigley, C.W., Békés, F., Bushuk, W. (eds), Gliadin and Glutenin. In: The Unique Balance of Wheat Quality. AACCI Press. St. Paul, MN, USA, pp. 387–409.CrossRefGoogle Scholar
  4. Armentia, A., Martin-Santos, J.M., Blanco, M. 1990. Exercise induced anaphylaxis reaction to grain flows. Ann. Allergy 65:149–151.PubMedGoogle Scholar
  5. Breiteneder, H., Radauer, C. 2004. A classification of plant food allergens. J. Allergy Clin. Immunol. 113:821–830.CrossRefGoogle Scholar
  6. Camarca, A., Anderson, R.P., Mamone, G., Fierro, O., Facchiano, A., Costantini, S., Zanzi, D., Sidney, J., Auricchio, S., Sette, A., Troncone, R., Gianfrani, C. 2009. Intestinal T cell responses to gluten peptides are largely heterogeneous: Implications for a peptide-based therapy in celiac disease. J. Immunol. 182:4158–4166.CrossRefGoogle Scholar
  7. Catassi, C., Fasano, A. 2008. Celiac disease. In: Arendt, E.K., Dal Bello, F. (eds), Gluten-Free Cereal Products and Beverages. Academic Press, San Diego, CA, USA, pp. 1–28.Google Scholar
  8. Clarke, B.C., Appels, R. 1999. Sequence variation at the Sec-1 locus of rye, Secale cereale (Poaceae). Plant Syst. Evol. 214:1–14.CrossRefGoogle Scholar
  9. Codex Standard for Foods for Special Dietary Use for Persons Intolerant to Gluten — CODEX STAN 118 — 1979, adopted in 1979; amended in 1983; revised in 2008, Codex Alimentarius, International Food Standards. Rome, Italy.Google Scholar
  10. Farkas, A., Molnár, I., Dulai, S., Rapi, S., Oldal, V., Cseh, A., Kruppa, K., Molnár-Láng, M. 2014. Increased micronutrient content (Zn, Mn) in the 3Mb (4B) wheat — Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH. Genome 57:61–67.CrossRefGoogle Scholar
  11. Juhász, A., Gell, Gy., Sebestyén, E., Haraszi, R., Tamás, L., Balázs, E. 2012a. Brachypodium distachyon as a model for defining the allergen potential of non-prolamin proteins. Funct. Integr. Genomics 12:439–446.CrossRefGoogle Scholar
  12. Juhász, A., Gell, Gy., Békés, F., Balázs, E. 2012b. The epitopes in wheat proteins for defining toxic units relevant to human health. Funct. Integr. Genomics 12:585–598.CrossRefGoogle Scholar
  13. Laurièrre, M., Pecquet, C., Bouchez-Mahiout, I., Snegaroff, J., Bayrou, O., Raison-Peyron, N., Vigan, M. 2006. Hydrolyzed wheat proteins present in cosmetics can induce immediate hypersensitivities. Contact Dermatitis 54:283–289.CrossRefGoogle Scholar
  14. Mills, E.N.C., Madsen, C., Shewry, P.R., Wichers, H.J. 2003. Food allergens of plant origin — their molecular and evolutionary relationships. Trends in Food Sci. Technol. 14:145–156.CrossRefGoogle Scholar
  15. Molberg, O., Uhlen, A.K., Jensen, T., Flaete, N.S., Fleckenstein, B., Arentz-Hansen, H., Raki, M., Lundin, K.E., Sollid, L.M. 2005. Mapping of gluten T-cell epitopes in the bread wheat ancestors: implications for celiac disease. Gastroenterology 128:393–401.CrossRefGoogle Scholar
  16. Morón, B., Cebolla, Á., Manyani, H., Álvarez-Maqueda, M., Megías, M., Thomas, M. del C., López, M.C., Sousa, C. 2008. Sensitive detection of cereal fractions that are toxic to celiac disease patients by using monoclonal antibodies to a main immunogenic wheat peptide. Am. J. Clin. Nutr. 87:405–414.CrossRefGoogle Scholar
  17. Osman, A.A., Uhlig, H.H., Valdes, I., Amin, M., Mendez, E., Mothes, T. 2001. A monoclonal antibody that recognizes a potential coeliac-toxic repetitive pentapeptide epitope in gliadins. Eur. J. Gastroent. Hepatol. 13:1189–1193.CrossRefGoogle Scholar
  18. Radauer, C., Breiteneder, H. 2007. Evolutionary biology of plant food allergens. J. Allergy Clin. Immun. 120:518–525.CrossRefGoogle Scholar
  19. Sampson, H.A., Metcalfe, D.D. 1992. Food allergies. J. Amer. Med. Assoc. 268:2840–2844.CrossRefGoogle Scholar
  20. Santra, M., Matthews, S.B., Thompson, H.J. 2013. Development of a core collection of Triticum and Aegilops species for improvement of wheat for activity against chronic diseases. Agriculture and Food Security 2:4.CrossRefGoogle Scholar
  21. Sapone, A., Bai, J.C., Ciacci, C., Dolinsek, J., Green, P.H.R., Hadjivassiliou, M., Kaukinen, K., Rostami, K., Sanders, D.S., Schumann, M., Ullrich, R., Villalta, D., Volta, U., Catassi, C., Fasano, A. 2012. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. BMC Medicine 10:13.CrossRefGoogle Scholar
  22. Schneider, A., Molnár, I., Molnár-Láng, M. 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19.CrossRefGoogle Scholar
  23. Skerritt, J.H., Lew, P.H., Castle, L.S. 1988. Accumulation of gliadin and glutenin polypeptides during development of normal and sulphur-deficient wheat seed: Analysis using specific monoclonal antibodies. J. Exp. Bot. 39:723–737.CrossRefGoogle Scholar
  24. Sollid, L.M., Qiao, S.W., Anderson, R.P., Gianfrani, C., Koning, F. 2012. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64:455–460.CrossRefGoogle Scholar
  25. Valdés, I., García, E., Llorente, M., Méndez, E. 2003. Innovative approach to low-level gluten determination in foods using a novel sandwich enzyme-linked immunosorbent assay protocol. Eur. J. Gastroenterol. 15:465–474.CrossRefGoogle Scholar
  26. van Herpen, T.W.J.M., Goryunova, S.V., van der Schoot, J., Mitreva, M., Salentijn, E.M.J., Vorst, O., Schenk, M.F., van Veelen, P.A., Koning, F., van Soest, L.J.M., Vosman, B., Bosch, D., Hamer, R.J., Gilissen, L.J.W.J., Smulders, M.J.M. 2006. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Gy. Gell
    • 1
  • K. Kovács
    • 1
  • I. Molnár
    • 2
  • Zs. Bugyi
    • 3
  • S. Tömösközi
    • 3
  • A. Juhász
    • 1
    Email author
  1. 1.Applied Genomics Department, Agricultural Institute, Centre for Agricultural ResearchHASMartonvásárHungary
  2. 2.Department of Plant Genetic Resources and Organic Breeding, Agricultural Institute, Centre for Agricultural ResearchHASMartonvásárHungary
  3. 3.Department of Applied Biotechnology and Food ScienceBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations