Effect of Zn Supplementation on Zn Concentration of Wheat Grain and Zn Fractions in Potentially Zn-Deficient Soil

Abstract

To investigate the effect of Zn fertilization on soil Zn fractions and grain Zn concentration in wheat grown on potentially Zn-deficient soil, a field experiment was carried out. The experimental design was split plot consisted of two varieties of wheat (Zhengmai 9023 and Xinong 889) with five Zn levels (0, 7.5, 15, 30 and 45 kg Zn/ha). Results showed that Zn fertilization had no significant effect on wheat yield and grain Zn concentration, and the recovery of Zn fertilizer was only 0.06% to 0.29%. However, the amount of soil DTPA-Zn was increased by 2.3-9.8-folds as Zn supplementation increases during the whole wheat growth stage as compared to the control (Zn0 treatment). Besides, DTPA-Zn was positively correlated with both Loose organic matter bound Zn (LOM-Zn) and Exchange Zn (Ex-Zn), and their partial correlation coefficients were 0.558 and 0.119, respectively. Moreover, these two fractions also showed positive correlation with grain Zn concentration. The amount of LOM-Zn was firstly increased with increasing Zn fertilizer levels then gradually decreased as it get converted to mineral bound Zn (Min-Zn). Zn fertilization in this potentially Zn deficient soil increased the amount of DTPA-Zn in the whole wheat growth stage; however, grain Zn concentration cannot be significantly increased as Zn levels increase, thus suggesting that there are inhibitory factors for Zn absorption and translocation. Furthermore, the amount of soil DTPA-Zn perhaps cannot exactly reflect the capability of soil to supply Zn.

References

  1. Alloway, B.J. 2008. Zinc in Soils and Crop Nutrition. IZA Publications. International Zinc Association, Brussels, The Netherlands.

    Google Scholar 

  2. Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302:1–17.

    CAS  Article  Google Scholar 

  3. Cakmak, I., Kalayci, M., Ekiz, H., Braun, H.J., Kilinc, Y., Yilmaz, A. 1999. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crops Res. 60:175–188.

    Article  Google Scholar 

  4. Chen, Z.H., Tian, X.H., Yang, X.W., Lu, X.C., Mai, W.X., Gale, W.J., Cao, Y.X. 2010. Comparison of zinc efficiency among winter wheat genotypes cultured hydroponically in chelator-buffered solutions. J. Plant Nutr. 33:1612–1624.

    CAS  Article  Google Scholar 

  5. Genc, Y., McDonald, G.K. 2008. Domesticated emmer wheat [T. turgidum L. subsp. dicoccon (Schrank) Thell.] as a source for improvement of zinc efficiency in durum wheat. Plant Soil 310:67–75.

    CAS  Article  Google Scholar 

  6. Gibson, R.S. 2006. Zinc: The missing link in combating micronutrient malnutrition in developing countries. Procs. of the Nutrition Soc. 65:51–60.

    CAS  Article  Google Scholar 

  7. Hajiboland, R., Yang, X.E., Römheld, V. 2003. Effects of bicarbonate and high pH on growth of Zn-efficiency and Zn-inefficient genotypes of rice, wheat and rye. Plant Soil 250:349–357.

    CAS  Article  Google Scholar 

  8. Hao, M.D., Wei, X.R., Dang, T.H. 2003. Effect of long-term applying zinc fertilizer on wheat yield and content of zinc in dryland. Plant Nutrition and Fertilizer Sci. 9:377–380. (in Chinese)

    Google Scholar 

  9. Jalali, M., Khanlari, Z.V. 2008. Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran. Geoderma 143:26–40.

    CAS  Article  Google Scholar 

  10. Kalayci, M., Torun, B., Eker, S., Aydin, M., Ozturk, L., Cakmak, I. 1999. Grain yield, zinc efficiency and zinc concentration of wheat cultivars grown in a zinc-deficiency calcareous soil in field and greenhouse. Field Crops Res. 63:87–98.

    Article  Google Scholar 

  11. Lindsay, W.L., Cox, F.R. 1985. Micronutrient soil testing for the tropics. Fertilizer Res. 7:169–200.

    CAS  Article  Google Scholar 

  12. Liu, H.M., Zhang, X.C., Su, S.H. 2008. Available zinc content and related properties of main soil in the loess plateau. J. Agro-Environment Sci. 27:898–902. (in Chinese)

    CAS  Google Scholar 

  13. López-Valdivia, L.M., Fernández, M.D., Obrador, A., Alvarez, J.M. 2002. Zinc transformations in acidic soil and zinc efficiency on maize by adding six organic zinc complexes. J. Agric. Food Chem. 50:1455–1460.

    Article  Google Scholar 

  14. Ozturk, L., Yazici, M.A., Yucel, C., Torun, A., Cekic, C., Bagci, A., Ozkan, H., Braun, H.J., Sayers, Z., Cakmak, I. 2006. Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum 128:144–152.

    CAS  Article  Google Scholar 

  15. Palmgren, M.G., Clemens, S., Williams, L.E., Krämer, U., Borg, S., Schjørring, J.K., Sanders, D. 2008. Zinc biofortification of cereals: Problems and solutions. Trends in Plant Sci. 13:464–473.

    CAS  Article  Google Scholar 

  16. Peleg, Z., Saranga, Y., Yazici, A., Fahima, T., Ozturk, L., Cakmak, I. 2008. Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–58.

    CAS  Article  Google Scholar 

  17. Pradhan, Y., Kanwar, B.B. 1990. Contribution of zinc fraction to available zinc extracted, by some chemical methods, from rice growing soils of North-Western Himalayas. Plant Soil 126:149–153.

    CAS  Article  Google Scholar 

  18. Prasad, A.S. 2007. Zinc: Mechanisms of host defense. J. Nutrition 137:1345–1349.

    CAS  Article  Google Scholar 

  19. Rengel, Z., Batten, G.D., Crowley, D.E. 1999. Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Res. 60:27–40.

    Article  Google Scholar 

  20. Schlegel, R., Cakmak, I., Torun, B., Eker, S., Tolay, I., Ekiz, H., Kalayci, M., Braun, H.J. 1998. Screening for zinc efficiency among wheat relatives and their utilization for alien gene transfer. Euphytica 100:281–286.

    CAS  Article  Google Scholar 

  21. Shivay, Y.S., Kumar, D., Prasad, R. 2008. Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice-wheat cropping system. Nutrient Cycling in Agroecosystems 81:229–234.

    CAS  Article  Google Scholar 

  22. Torun, B., Bozbay, G., Gultekin, I., Braun, H.J., Ekiz, H., Cakmak, I. 2000. Differences in shoot growth and zinc concentration of 164 bread wheat genotypes in a zinc-deficient calcareous soil. J. Plant Nutr. 23:1251–1265.

    CAS  Article  Google Scholar 

  23. Wei, X.R., Hao, M.D., Zhang, C.X. 2005. Zinc fractions and availability in the soil of the loess plateau after long-term continuous application of zinc fertilizer. Scientia Agricultura Sinica 38:1386–1393. (in Chinese)

    CAS  Google Scholar 

  24. Yang, X.E., Chen, W.R., Feng, Y. 2007. Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ. Geochem. Health 29:413–428.

    CAS  Article  Google Scholar 

  25. Yilmaz, A., Ekiz, H., Gultekin, I., Torun, B., Barut, H., Karanlik, S., Cakmak, I. 1998. Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. J. Plant Nutr. 21:2257–2264.

    CAS  Article  Google Scholar 

  26. Zhang, Y., Song, Q.C., Yan, J., Tang, J.W., Zhao, R.R., Zhang, Y.Q., He, Z.H., Zou, C.Q., Ortiz-Monasterio, I. 2010. Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica 174:303–313.

    Article  Google Scholar 

  27. Zhu, B., Qing, C.L., Mu, S.S. 2002. Bioavailability of exotic zinc and cadmium in purple soil. Chinese J. Appl. Ecol. 13:555–558. (in Chinese)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. H. Tian.

Additional information

Communicated by A. Pécsváradi

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Lu, X.C., Tian, X.H., Zhao, A.Q. et al. Effect of Zn Supplementation on Zn Concentration of Wheat Grain and Zn Fractions in Potentially Zn-Deficient Soil. CEREAL RESEARCH COMMUNICATIONS 40, 385–395 (2012). https://doi.org/10.1556/CRC.40.2012.3.7

Download citation

Keywords

  • calcareous soil
  • DTPA-Zn
  • Zn concentration
  • Zn fraction
  • Zn level