Cereal Research Communications

, Volume 40, Issue 3, pp 334–341 | Cite as

The D Genome Carries a Gene Determining Purple Grain Colour in Wheat

  • O. Y. Tereshchenko
  • E. I. Gordeeva
  • V. S. Arbuzova
  • A. Börner
  • E. K. KhlestkinaEmail author


Previously, it was suggested that purple grain colour was transferred to bread wheat from purple-grained tetraploid T. durum. In the current study, we demonstrated that the D genome of bread wheat ‘Purple’ carries one of two complementary genes determining purple grain colour. This gene was mapped on the short arm of chromosome 7D 2.5 cM distal to the locus Rc-D1 determining red coleoptile colour. This position is highly comparable with that of the Pp1 gene mapped earlier on the short arm of chromosome 7B in tetraploid T. durum. We suggest the Pp genes on T. durum chromosome 7B and T. aestivum chromosome 7D are orthologous. We designated them Pp-B1 and Pp-D1, respectively. Microsatellite-based genotyping of near-isogenic lines ‘i:S29Pp1Pp2PF’ and ‘i:S29Pp1Pp3P’, their recurrent (T. aestivum ‘Saratovskaya 29’) and donor (T. aestivum ‘Purple Feed’ and ‘Purple’, respectively) parents showed the presence of donor introgressions on chromosomes 2A and 7D in both near-isogenic lines. In addition to previously described purple pericarp, anthers and culms, phenotyping of these lines in the current study showed dark red coleoptile colour (with anthocyanin contents four times higher than in ‘Saratovskaya 29’ coleoptiles) and purple leaf blade and leaf sheath colour. It was concluded that each of the lines ‘i:S29Pp1Pp2PF’ and ‘i:S29Pp1Pp3P’ carry clusters of genes Rc-D1, Pc-D1, Pan-D1, Plb-D1, Pls-D1 and Pp-D1 on chromosome 7D between microsatellite markers Xgwm0044 and Xgwm0676.


Triticum aestivum L. microsatellite markers genotyping near-isogenic lines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbuzova, V.S., Maystrenko, O.I. 2000. Chromosomal location of genes for purple grain colour introgressed in common wheat. Cereal Res. Commun. 28:235–237.Google Scholar
  2. Arbuzova, V.S., Maystrenko, O.I., Popova, O.M. 1998. Development of near-isogenic lines of the common wheat cultivar’ saratovskaya 29’. Cereal Res. Commun. 26:39–46.Google Scholar
  3. Dobrovolskaya, O.B., Arbuzova, V.S., Lohwasser, U., Röder, M.S., Börner, A. 2006. Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364.CrossRefGoogle Scholar
  4. Ganal, M., Röder, M.S. 2007. Microsatellite and SNP markers in wheat breeding. In: Varshney, R.K., Tuberosa, R. (eds), Genomics-assisted Crop Improvement. Vol. 2. Genomics applications in crops. Springer, Dordrecht, The Netherlands, pp. 1–24.Google Scholar
  5. Khlestkina, E.K., Pshenichnikova, T.A., Röder, M.S., Börner, A. 2009. Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Res. Commun. 37:391–398.CrossRefGoogle Scholar
  6. Khlestkina, E.K., Röder, M.S., Börner, A. 2010. Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica 171:65–69.CrossRefGoogle Scholar
  7. Khlestkina, E.K., Antonova, E.V., Pershina, L.A., Soloviev, A.A., Badaeva, E.D., Börner, A., Salina, E.A. 2011. Variability of Rc (red coleoptile) alleles in wheat and wheat-alien genetic stock collections. Cereal Res. Commun. 39:465–474.CrossRefGoogle Scholar
  8. Knievel, D.C., Abdel-Aal, E.-S.M., Rabalski, I., Nakamura, T., Hucl, P. 2009. Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). J. Cereal Sci. 50:113–120.CrossRefGoogle Scholar
  9. Laikova, L.I., Arbuzova, V.S., Efremova, T.T., Popova, O.M. 2005. Genetic analysis of anthocyanin of the anthers and culm pigmentation in common wheat. Rus. J. Genet. 41:1428–1433.CrossRefGoogle Scholar
  10. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, I. 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.CrossRefGoogle Scholar
  11. Plaschke, J., Ganal, M.W., Röder, M.S. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 191:1001–1007.CrossRefGoogle Scholar
  12. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  13. Tereshchenko, O.Y., Pshenichnikova, T.A., Salina, E.A., Khlestkina, E.K. 2012. Development and molecular characterization of a novel wheat genotype having purple grain colour. Cereal Res. Commun. 40 (in press).Google Scholar
  14. Zeven, A.C. 1991. Wheats with purple and blue grains: a review. Euphytica 56:243–258.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

Authors and Affiliations

  • O. Y. Tereshchenko
    • 1
  • E. I. Gordeeva
    • 1
  • V. S. Arbuzova
    • 1
  • A. Börner
    • 2
  • E. K. Khlestkina
    • 1
    Email author
  1. 1.Institute of Cytology and Genetics (ICG)Siberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations