Growth and Metabolic Responses of Maize (C4 Species) and Rice (C3 Species) Genotypes to Cadmium Toxicity

Abstract

Toxic metals such as cadmium (Cd) are detrimental for growth of the crops. The differential sensitivity of maize and rice, the two vital cereals, which also belong to C4 and C3 plant types, respectively, to a similar degree of Cd stress is not known that comprised the objective of this study. Maize and rice genotypes were grown hydroponically in the presence of 5 and 10 μM cadmium (Cd) concentrations to examine their relative sensitivity to this metal at growth and metabolic levels. The shoots of maize genotypes accumulated relatively greater cadmium than those of rice while the roots of both the plant types did not differ significantly in cadmium accumulation. The shoots and roots of maize genotypes showed higher growth than rice genotypes under both Cd levels. At similar Cd level, the rice shoots showed greater damage to membranes and chlorophyll than maize shoots. The activities of RUBP carboxylase and phosphoenolpyruvate carboxylase were significantly greater in maize than in rice under Cd stress. Maize genotypes also possessed greater sucrose content and sucrose phosphate synthase activity in their shoots than rice genotypes. The oxidative damage as malondialdehyde and hydrogen peroxide was higher in rice genotypes. The rice genotypes showed greater induction of antioxidants such as superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and ascorbic acid than maize genotypes. On the other hand, glutathione, proline, metallothioneins, total thiols content and glutathione-s-transferase activity were significantly higher in maize genotypes under Cd stress suggesting their superior capacity to deal with Cd toxicity. The observations indicated that the maize genotypes representing C4 plant type appear to have greater Cd tolerance than the rice genotypes representing C3 plant type. The findings speculate that C4 plant species may adapt to toxic metals such as Cd in a better way than C3 ones but further study involving several representatives of these plant types need to be carried out to corroborate it.

References

  1. Ali, M.B., Chun, H.S., Kim, B.K., Lee, C.B. 2002. Cadmium-induced changes in antioxidant enzyme activities in rice (Oryza sativa L. cv. Dongjin). J. Plant Biol. 45:134–140.

    Article  CAS  Google Scholar 

  2. Arnon, D.I. 1949. Copper enzyme in isolated chloroplasts: Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barrs, H.D., Weatherley, P.E. 1962. A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Aust. J. Biol. Sci. 15:413–428.

    Article  Google Scholar 

  4. Bates, L.S., Woldren, R.P., Teare I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39:205–208.

    Article  CAS  Google Scholar 

  5. Blanke, M., Notton, B., Hucklesby, D. 1986. Physcial and kinetic properties of photosynthetic PEP carboxylase in developing apple fruit. Phyochem. 25:601–606.

    Article  CAS  Google Scholar 

  6. Cai, Y., Su, J., Ma, L.Q. 2004. Low molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elements. Environ. Pollut. 129:69–78.

    Article  CAS  Google Scholar 

  7. Change, B., Maehly, A.C. 1955. Assay of catalases and peroxidase. Methods Enzymol. 2:764–775.

    Article  Google Scholar 

  8. Chao, Y.Y., Kao, C.H. 2010. Heat shock-induced ascorbic acid accumulation in leaves increases cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant and Soil 336:39–48.

    Article  CAS  Google Scholar 

  9. Ci, D., Jiang, D., Wollenweber, B., Dai, T., Jing, Q., Cao, W. 2010. Cadmium stress in wheat seedlings: Growth, cadmium accumulation and photosynthesis. Acta Physiol. Plantarum 32:365–373.

    Article  CAS  Google Scholar 

  10. DalCorso, G., Farinati, S., Maistri, S., Furini, A. 2008. How plants cope with cadmium: Staking all on metabolism and gene expression. J. Integrative Plant Biol. 50:1268–1280.

    Article  CAS  Google Scholar 

  11. Dejardin, A., Rochat, C., Maugenest, S., Boutin, J.P. 1997. Purification, characterization and physiological role of sucrose synthase in the pea seed coat (Pisum sativum L.). Planta 201:128–127.

    Article  CAS  Google Scholar 

  12. Devi, R., Munjral, N., Gupta, A.K., Kaur, N. 2007. Cadmium induced changes in carbohydrate status and enzymes of carbohydrate metabolism, glycolysis and pentose phosphate pathway in pea. Environ. and Exp. Bot. 61:167–174.

    Article  CAS  Google Scholar 

  13. Dixon, D.P., Lapthorn, A., Edwards, R. 2005. Plant glutathione transferases. Genome biology. Plant Physiol. and Biochem. 43:491–498.

    Article  CAS  Google Scholar 

  14. Ellman, G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. and Biophysics 82:70–77.

    Article  CAS  Google Scholar 

  15. Foyer, C.H., Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133:21–25.

    Article  CAS  Google Scholar 

  16. Freeman, J.L., Persans, M.W., Nieman, K., Albrecht, C., Peer, W., Pickering, I.J., Salta, D.E. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gambarova, N.G., Gins, M.S. 2008. Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Russian J. Plant Physiol. 34:77–80.

    Google Scholar 

  18. Giannopolities, C.N., Ries, S.K. 1977. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 59:309–314.

    Article  Google Scholar 

  19. Griffth, O.W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2 vinyl pyridine. Ann. Biochem. 106:207–212.

    Article  Google Scholar 

  20. Gyuricza, V., Fodor, F., Szigeti, Z. 2010. Phytotoxic effects of heavy metal contaminated soil reveal limitations of extract-based ecotoxicological tests. Water Air Soil Poll. 210:113–122.

    Article  CAS  Google Scholar 

  21. Habig, W.H., Pabst, M.J., Jackoby, W.B. 1974. Glutathione-s-transferase, the first enzymatic step in mercapturic acid formation. J. Environ. Qual. 2:93–96.

    Google Scholar 

  22. Harada, E., Yamaguchi, Y., Koizumi, N., Hiroshi, S. 2002. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulphur assimilation pathways in Arabidopsis. J. Plant Physiol. 159:445–448.

    Article  CAS  Google Scholar 

  23. Hawker, J.S., Walker, R.R., Raffner, H.P. 1976. Invertase and sucrose synthase in flowers. Phytochem. 15:1411–1443.

    Article  Google Scholar 

  24. Heath, R.L., Packer, L. 1968. Photoperoxidation in isolated chloroplast. I. Kinetics and stochiometery of fatty acid peroxidation. Arch. Biochem. and Biophysics 125:189–198.

    Article  CAS  Google Scholar 

  25. Heyno, E., Klose, C., Krieger-Liszkay, A. 2008. Origin of cadmium-induced reactive oxygen species production: Mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol. 179:687–699.

    Article  CAS  Google Scholar 

  26. Hsu, Y.T., Kao, C.H. 2007. Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant and Soil 298:231–241.

    Article  CAS  Google Scholar 

  27. Jain, M., Pal, M., Gupta, P., Gadre, R. 2007. Effect of cadmium on chlorophyll biosynthesis and enzymes of nitrogen assimilation in greening maize leaf segments: Role of 2-oxoglutarate. Indian J. Exp. Biol. 45:385–389.

    CAS  PubMed  Google Scholar 

  28. Jones, M.G.K., Outlaw, W.H. Jr, Lowry, O.H. 1977. Enzymic assay of 10-7 to 10-14 moles of sucrose in plant tissues. Plant Physiol. 60:379–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krantev, A., Yordanova, R., Janda, T., Szalai, G., Popova, L. 2008. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant Physiol. 165:920–931.

    Article  CAS  Google Scholar 

  30. Kumar, P., Tewari, R.K., Sharma, P.N. 2007. Cadmium enhances generation of hydrogen peroxide and amplifies activities of catalase, peroxidases and superoxide dismutase in Maize. Journal of Agronomy and Crop Sci. 194:72–80.

    Article  CAS  Google Scholar 

  31. Lee, K.R., Roh, K.S. 2003. Influence of cadmium on rubisco activation in Canavalia ensiformis L. leaves. Biotechnol. and Bioprocess Engin. 8:94–100.

    Article  CAS  Google Scholar 

  32. Markovska, Y.K., Gorinova, N.I., Nedkovska, M.P., Miteva, K.M. 2009. Cadmium-induced oxidative damage and antioxidant responses in Brassica juncea plants. Biologia Plantarum 53:151–154.

    Article  CAS  Google Scholar 

  33. Memon, A.R., Schröder, P. 2009. Implications of metal accumulation mechanisms to phytoremediation. Environ. Sci. Pollut. Res. 16:162–175.

    Article  CAS  Google Scholar 

  34. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7:405–410.

    Article  CAS  Google Scholar 

  35. Mukherjee, S.P., Choudhuri, M.A. 1983. Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum 58:166–170.

    Article  CAS  Google Scholar 

  36. Nakano, Y., Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.

    CAS  Google Scholar 

  37. Nayyar, H., Gupta, D. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ. and Exp. Bot. 58:106–113.

    Article  CAS  Google Scholar 

  38. Polit, S., Krupa, Z. 2006. Lipid peroxidation in cadmium-treated Phaseolus coccineus plants. Ach. Environ. Contamination and Toxicol. 50:482–487.

    Article  CAS  Google Scholar 

  39. Premchandra, G.S., Sameoka, H., Ogata, S. 1990. Cell osmotic membrane-stability, an indication of drought tolerance, as affected by applied nitrogen in soil. J. Agricult. Res. 115:63–66.

    Google Scholar 

  40. Qian, H., Li, J., Sun, L., Chen, W., Sheng, G.D., Liu, W., Fu, Z. 2009. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquatic Toxicol. 94:56–61.

    Article  CAS  Google Scholar 

  41. Racker, E. 1962. Ribulose diphosphate carboxylase from spinach leaves. Methods Enzymol. 5:266–270.

    Article  CAS  Google Scholar 

  42. Rahoui, S., Chaoui, A., Ferjani, E.E. 2010. Membrane damage and solute leakage from germinating pea seed under cadmium stress. J. Hazardous Materials 78:1128–1131.

    Article  CAS  Google Scholar 

  43. Rellán-Álvarez, R., Ortega-Villasante, C., Álvarez-Fernández, A., Campo, F.F.D., Hernández, L.E. 2006. Stress responses of Zea mays to cadmium and mercury. Plant and Soil 279:41–50.

    Article  CAS  Google Scholar 

  44. Sedlack, J., Lindsay, R.H. 1968. Estimation of total protein bound and non-protein sulfhydryl groups in tissues with Ellman’s reagent. Ann. Biochem. 25:192–205.

    Article  Google Scholar 

  45. Shah, K., Kumar, R.G., Verma, S., Dubey, R.S. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161:1135–1144.

    Article  CAS  Google Scholar 

  46. Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S., Cakmak, I. 2006. Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J. Trace Elements in Medicine and Biol. 26:181–189.

    Article  CAS  Google Scholar 

  47. UNEP 1999. Manual on the biomarkers recommended for the MEDPOL biomonitoring programme, by the United Nations Environment Program (UNEP). Mediterranean Action Plan, MED POL, RAMOGE, 1999, MAP special publications. 92 pp.

  48. Viarengo, A., Ponzano, E., Donder, F., Fabbri, R. 1997. A simple spectrophotomtertic method of metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Marine Environ. Res. 44:69–84.

    Article  CAS  Google Scholar 

  49. Wong, H.L., Sakamoto, T., Kawasaki, T., Umemura, K., Shimamoto, K.O. 2004. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol. 35:1447–1456.

    Article  Google Scholar 

  50. Wójcik, M., Tukendorf, A. 1999. Cd-tolerance of maize, rye and wheat seedlings. Acta Physiol. Plant 21:99–107.

    Article  Google Scholar 

  51. Zhang, R.Q., Tang, C.F., Wen, S.Z., Liu, Y.G., Li, K.L. 2006. Advances in research on genetically engineered plants for metal resistance. Journal of Integrative Biology 48:1257–1265.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Nayyar.

Additional information

Communicated by A. Goyal

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Goel, S., Malik, J.A., Awasthi, R. et al. Growth and Metabolic Responses of Maize (C4 Species) and Rice (C3 Species) Genotypes to Cadmium Toxicity. CEREAL RESEARCH COMMUNICATIONS 40, 225–234 (2012). https://doi.org/10.1556/CRC.40.2012.2.7

Download citation

Keywords

  • cadmium
  • carbon metabolism
  • metallothioneins
  • Oryza sativa
  • oxidative stress
  • Zea mays