Advertisement

Cereal Research Communications

, Volume 40, Issue 2, pp 210–214 | Cite as

Development and Molecular Characterization of a Novel Wheat Genotype Having Purple Grain Colour

  • O. Y. Tereshchenko
  • T. A. Pshenichnikova
  • E. A. Salina
  • E. K. KhlestkinaEmail author
Article

Abstract

Purple colour of wheat grain is determined by anthocyanin accumulation in the pericarp. This trait is controlled in hexaploid Triticum aestivum or tetraploid T. durum wheats by two complementary dominant genes Pp1 (chromosome 7B) and Pp3 (chromosome 2A). It remained unclear, whether functional alleles of one of the two complementary Pp genes occur in the diploid progenitors of allopolyploid wheat or in tetraploid T. timopheevii. In the current study, a purple-grained wheat line PC was obtained by crossing non-purple-grained T. aestivum Line 821 and Line 102/00i carrying introgressions from T. timopheevii and Aegilops speltoides, respectively. Crosses of lines 821 and 102/00i with a number of tester lines and cultivars did not result in purple-grained genotypes suggesting that expression of this trait in PC was controlled by complementary factors, one located in the T. timopheevii introgression and the other in the introgression inherited from Ae. speltoides. Genotyping of PC and other parental lines using microsatellite markers located on wheat chromosomes 7B and 2A showed that PC carries chromosome 7S of Ae. speltoides substituting for chromosome 7B, whereas chromosome 2A of PC contains an extended introgression from T. timopheevii.

Keywords

Triticum aestivum T. timopheevi Aegilops speltoides purple pericarp microsatellite markers genotyping complementary genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbuzova, V.S., Maystrenko, O.I. 2000. Chromosomal location of genes for purple grain colour introgressed in common wheat. Cereal Res. Commun. 28:235–237.Google Scholar
  2. Arbuzova, V.S., Maystrenko, O.I., Popova, O.M. 1998. Development of near-isogenic lines of the common wheat cultivar’ saratovskaya 29’. Cereal Res. Commun. 26:39–46.Google Scholar
  3. Budashkina, E. 1988. Cytogenetic study of introgressive disease-resistant common wheat lines. Tag. Ber. Acad. Landwirtsch. Wiss. DDR 206:209–212.Google Scholar
  4. Dobrovolskaya, O.B., Arbuzova, V.S., Lohwasser, U., Röder, M.S., Börner, A. 2006. Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364.CrossRefGoogle Scholar
  5. Dobrovolskaya, O.B., Pshenichnikova, T.A., Arbuzova, V.S., Lohwasser, U., Röder, M.S., Börner, A. 2007. Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155:285–293.CrossRefGoogle Scholar
  6. Ganal, M., Röder, M.S. 2007. Microsatellite and SNP markers in wheat breeding. In: Varshney, R.K., Tuberosa, R. (eds), Genomics-assisted Crop Improvement. Vol. 2. Genomics Applications in Crops. Springer, Dordrecht, The Netherlands, pp. 1–24.Google Scholar
  7. Khlestkina, E.K., Pshenichnikova, T.A., Röder, M.S., Börner, A. 2009. Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Res. Commun. 37:391–398.CrossRefGoogle Scholar
  8. Khlestkina, E.K., Röder, M.S., Börner, A. 2010a. Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica 171:65–69.CrossRefGoogle Scholar
  9. Khlestkina, E.K., Röder, M.S., Pshenichnikova, T.A., Börner, A. 2010b. Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L.). Mol. Breed. 25:125–132.CrossRefGoogle Scholar
  10. Knievel, D.C., Abdel-Aal, E-S.M., Rabalski, I., Nakamura, T., Hucl, P. 2009. Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). J. Cereal Sci. 50:113–120.CrossRefGoogle Scholar
  11. Lapochkina, I.F. 2001. Genetic diversity of “Arsenal” collection and its use in wheat breeding. Abstr. Intern. Appl. Sci. Conference “Genetic Resources of Cultural Plants”, November 13–16, 2001, St-Petersburg, Russia, pp. 133–135.Google Scholar
  12. Plaschke, J., Ganal, M.W., Röder, M.S. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 191:1001–1007.CrossRefGoogle Scholar
  13. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M-H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  14. Zeven, A.C. 1991. Wheats with purple and blue grains: A review. Euphytica 56:243–258.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

Authors and Affiliations

  • O. Y. Tereshchenko
    • 1
  • T. A. Pshenichnikova
    • 1
  • E. A. Salina
    • 1
  • E. K. Khlestkina
    • 1
    Email author
  1. 1.Institute of Cytology and Genetics (ICG)Siberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations