Advertisement

Cereal Research Communications

, Volume 40, Issue 2, pp 194–203 | Cite as

Validation of Molecular Markers for Pre-Harvest Sprouting Resistance in Bread Wheat

  • R. Singh
  • P. Hucl
  • M. Båga
  • R. N. ChibbarEmail author
Article

Abstract

Pre-harvest sprouting (PHS) in bread wheat (Triticum aestivum L.) is one of the major abiotic constraints influencing production of high quality grain. Selection for pre-harvest sprouting (PHS) resistance in bread wheat (Triticum aestivum L.) in early generations is difficult because it is expressed as a quantitatively inherited trait and subject to environmental effects. The objectives of this study were to validate a major quantitative trait locus (QTL) for PHS resistance on chromosome 4A in bread wheat and to isolate near-isogenic lines for this QTL using marker-assisted selection. A total of 60 Canadian wheat cultivars and experimental lines were screened with three SSR markers in a QTL region for PHS resistance. The SSR markers DuPw004, barc170 and wmc650 explained 67%, 75% and 60% of total variation in germination (%), respectively, among different wheat genotypes. Marker assisted back crossing with DuPw004 reduced the population size in BC1 F1 and BC2 F1 generation by 41% and 59%, respectively. A survey of pedigrees of different genotypes revealed that the parental line RL4137 is a major source of increased PHS resistance in a number of western Canadian wheat cultivars. Microsatellite markers (DuPw004, barc170 and wmc650) will be useful for plant breeders to pyramid QTL from different PHS resistance sources.

Keywords

pre-harvest sprouting molecular marker marker validation marker assisted selection wheat (Triticum aestivum L.) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2012_40020194_MOESM1_ESM.pdf (109 kb)
Supplementary material, approximately 228 KB.

References

  1. Anderson, J.A., Sorrells, M.E., Tanksley, S.D. 1993. RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Sci. 33:453–459.CrossRefGoogle Scholar
  2. Andreoli, C., Bassoi, M.C, Brunetta, D. 2006. Genetic control of seed dormancy and pre-harvest sprouting in wheat. Sci. Agric. 63:564–566.CrossRefGoogle Scholar
  3. Båga, M., Chodaparambil, S.V., Limin, A.E., Pecar, M., Fowler, D.B., Chibbar, R.N. 2007. Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct. Integr. Genomics 7:53–68.CrossRefGoogle Scholar
  4. Bassoi, M.C., Flintham, J. 2005. Relationship between grain colour and preharvest sprouting-resistance in wheat. Pesq. Agropec. Bras. 40:981–988.CrossRefGoogle Scholar
  5. Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B., Pang, E.C.K. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169–196.CrossRefGoogle Scholar
  6. DePauw, R.M., McLeod, J.G., Clarke, J.M., McCaig, T.N., Fernandez, M.R., Knox, R.E. 1994. AC Eatonia hard red spring wheat. Can. J. Plant Sci. 74:821–823.CrossRefGoogle Scholar
  7. Flintham, J., Adlam, R., Bassoi, M., Holdsworth, M., Gale, M. 2002. Mapping genes for resistance to sprouting damage in wheat. Euphytica 126:39–45.CrossRefGoogle Scholar
  8. Flintham, J.E., Gale M.D. 1996. Dormancy gene maps in homoeologous cereal genomes. In: Noda K, Mares DJ (eds) Pre-harvest Sprouting in Cereals. Center for Academic Societies, Osaka, Japan, pp. 143–149.Google Scholar
  9. Hatcher, D.W., Symons, S.J. 2000. Influence of sprout damage on oriental noodle appearance as assessed by image analysis. Cereal Chem. 77:380–387.CrossRefGoogle Scholar
  10. Hucl, P., Matus-Cádiz, M. 2002a. CDC EMDR-4, CDC EMDR-9, and CDC EMDR-14 spring wheats. Can. J. Plant Sci. 82:411–413.CrossRefGoogle Scholar
  11. Hucl, P., Matus-Cádiz, M. 2002b. W98616, a white-seeded spring wheat with increased preharvest sprouting. Can. J. Plant Sci. 82:129–131.CrossRefGoogle Scholar
  12. Koebner, R.M.D., Summers, R.W. 2003. 21st century wheat breeding: Plot selection or plate detection?. Trends Biotechnol. 21:59–63.CrossRefGoogle Scholar
  13. Mares, D.J. 1987. Pre-harvest sprouting tolerance in white grained wheats. In: Mares, D.J. (ed.), Fourth International Symposium on Pre-harvest Sprouting in Cereals. Westview Press Inc., Boulder, USA, pp. 75–84.Google Scholar
  14. Mares, D.J., Campbell, A.W. 2001. Mapping components of flour and noodle colour in Australian wheat. Aust. J. Agric. Res. 52:1297–1309.CrossRefGoogle Scholar
  15. Mares, D.J., Mrva, K., Fincher, G.B. 2004. Enzyme activities. In: Wrigley, C., Corke, H., Walker, C.E. (eds), Encyclopedia of Grain Science. Elsevier Academic Press, Oxford, UK, pp. 357–365.CrossRefGoogle Scholar
  16. Mares, D., Mrva, K., Cheong, J., Williams, K., Watson, B., Storlie, E., Sutherland, M., Zou, Y. 2005. A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor. Appl. Genet. 111:1357–1364.CrossRefGoogle Scholar
  17. Noda, K., Matsuura, T., Maekawa, M., Taketa, S. 2002. Chromosomes responsible for sensitivity of embryo to abscisic acid and dormancy in wheat. Euphytica 123:203–209.CrossRefGoogle Scholar
  18. Ogbonnaya, F.C., Imtiaz, M., DePauw, R.M. 2007. Haplotype diversity at pre-harvest sprouting QTLs in wheat. Genome 50:107–118.CrossRefGoogle Scholar
  19. Ogbonnaya, F.C., Imtiaz, M., Ye, G., Hearnden, P.R., Hernandez, E., Eastwood, R. F., van Ginkel, M., Shorter, S.C., Winchester, J.M. 2008. Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in wheat germplasm CN10955. Theor. Appl. Genet. 116:891–902.CrossRefGoogle Scholar
  20. Osanai, S.I., Amano, Y. 1993. Selection of tolerant lines to low temperature germinability in wheat. In: Walker-Simmons, M.K., Ried, J.L. (eds), Pre-harvest Sprouting in Cereals. American Association of Cereal Chemists, St. Paul, MA, USA, pp. 76–82.Google Scholar
  21. Parker, G.D., Chalmers, K.J., Rathjen, A.J., Langridge, P. 1998. Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor. Appl. Genet. 97:238–245.CrossRefGoogle Scholar
  22. Sharp, P.J., Johnston, S., Brown, G., McIntosh, R.A., Pallotta, M., Carter, M., Bariana, H.S., Khatkar, S., Lagudah, E.S., Singh, R.P., Khairallah, M., Potter, R., Jones, M.G.K. 2001. Validation of molecular markers for wheat breeding. Aust. J. Agric. Res. 52:1357–1366.CrossRefGoogle Scholar
  23. Singh, R., Matus-Cádiz, M.A., Båga, M., Hucl, P., Chibbar, R.N. 2008. Comparison of different methods for phenotyping pre-harvest sprouting in white-grained wheat. Cereal Chem. 85:238–242.CrossRefGoogle Scholar
  24. Singh, R., Matus-Cádiz, M.A., Båga, M., Hucl, P., Chibbar, R.N. 2010. Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica 174:391–408.CrossRefGoogle Scholar
  25. Tan, M.K., Sharp, P.J., Lu, M.Q., Howes, N. 2006. Genetics of grain dormancy in a white wheat. Aust. J. Agric. Res. 57:1157–1165.CrossRefGoogle Scholar
  26. Visscher, P.M., Haley, C.S., Thompson, R. 1996. Marker-assisted introgression in backcross breeding programs. Genetics 144:1923–1932.PubMedPubMedCentralGoogle Scholar
  27. Yu, K., Park, S.J., Poysa, V. 2000. Marker-assisted selection of common beans for resistance to common bacterial blight: Efficacy and economics. Plant Breed. 119:411–415.CrossRefGoogle Scholar
  28. Zadoks, J.C., Chang, T.T., Konzak, C.F. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415–421.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

Authors and Affiliations

  1. 1.Department of Plant SciencesUniversity of SaskatchewanSaskatoonCanada
  2. 2.Crop Development CentreUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations