Advertisement

Cereal Research Communications

, Volume 40, Issue 2, pp 185–193 | Cite as

Evaluation of Genetic Diversity of Spelt Breeding Materials Based on AFLP and Quality Analyses

  • G. GulyásEmail author
  • M. Rakszegi
  • Z. Bognár
  • L. Láng
  • Z. Bedő
Article

Abstract

The genetic diversity of cultivated spelt (Triticum aestivum ssp. spelta) presently is narrow. Evaluation of germplasm collections of spelt on quality level supplemented with DNA analysis is, therefore, of great importance. This study was designed to help the evaluation process for the selection of new spelt varieties with a support of molecular characterization. A total of 30 genotypes, including two common wheat varieties, were included in the evaluation of genetic diversity on quality and DNA levels. According to the quality attributes, spelt flours exhibited medium rheological parameters and many of them had average gluten quality. AFLP analysis was conducted to evaluate phylogenetic relationships and the genetic diversity present in the accessions. A high level of genetic diversity was revealed by the very high PIC values. Two main clusters could be separated on the dendrogram: a cluster with genotypes that have common wheat in their pedigree and another cluster consisting of pure spelt accessions. The extent of genetic diversity in the spelt germplasm collections was confirmed not only by molecular markers but on the basis of quality assessment.

Keywords

AFLP breadmaking quality diversity Triticum aestivum ssp. spelta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2012_40020185_MOESM1_ESM.pdf (175 kb)
Supplementary material, approximately 228 KB.

References

  1. AACC Method. 76-13. 1999b. Total starch assay procedure. Megazyme amyloglucosidase/á-amylase method. AACC International, St. Paul, MA, USA.Google Scholar
  2. AACC Method. 2000. Approved methods of the American Association of Cereal Chemists, 10th edn. American Association of Cereal Chemists Inc., St. Paul, MA, USA.Google Scholar
  3. Abdel-Aal, E.S.M., Hucl, P. 2002. Amino acid composition and in vitro protein digestibility of selected ancient wheats and their end products. J. Food Compos. Anal. 15:737–747.CrossRefGoogle Scholar
  4. An, X.L., Li, Q.Y., Yan, Y.M., Xiao, Y.H., Hsam, S.L.K., Zeller, F.J. 2005. Genetic diversity of European spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.) revealed by glutenin subunit variations at the Glu-1 and Glu-3 loci. Euphytica 146:193–201.CrossRefGoogle Scholar
  5. Anderson, J.A., Churchill, J.E., Autrique, S.D., Tanksley, S., Sorrells, M.E. 1993. Optimizing parental selection for genetic linkage maps. Genome 36:181–188.CrossRefGoogle Scholar
  6. Bertin, P., Gregoire, D., Massart, S., de Froidmont, D. 2004. High level of genetic diversity among spelt germplasm revealed by microsatellite markers. Genome 47:1043–1052.CrossRefGoogle Scholar
  7. Bonafaccia, G., Galli, V., Francisci, R., Mair, V., Skrabanja, V., Kreft, I. 2000. Characteristics of spelt wheat products and nutritional value of spelt wheat based bread. Food Chem. 68:437–441.CrossRefGoogle Scholar
  8. Bryan, G.J., Collins, A.J., Stephenson, P., Orry, A., Smith, J.B., Gale, M.D. 1997. Isolation and characterisation of microsatellites from hexaploid common wheat. Theor. Appl. Genet. 94:557–563.CrossRefGoogle Scholar
  9. Buerstmayr, H., Lemmens, M., Hartl, L., Doldi, L., Steiner, B., Stierscheider, M., Ruckenbauer, P. 2002. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor. Appl. Genet. 104:84–91.CrossRefGoogle Scholar
  10. Caballero, L., Martin, L.M., Alvarez, J.B. 2004. Variation and genetic diversity for gliadins in Spanish spelt wheat accessions. Genet. Resour. Crop Evol. 51:679–686.CrossRefGoogle Scholar
  11. Caballero, L., Martin, L.M., Alvarez, J.B. 2008. Genetic diversity in Spanish populations of Triticum spelta L. (escanda): example of an endangered genetic resource. Genet. Resour. Crop Evol. 55:675–682.CrossRefGoogle Scholar
  12. Campbell, K.G. 1997. Spelt: Agronomy, genetics, and breeding. Plant Breeding Review 15:187–213.Google Scholar
  13. Escarnot, E., Agneessens, R., Wathelet, B., Paquot, M. 2010. Quantitative and qualitative study of spelt and wheat fibres in varying milling fractions. Food Chem. 122:857–863.CrossRefGoogle Scholar
  14. Gomez-Becerra, H.F., Erdemb, H., Yazici, A., Tutus, Y., Torun, B., Ozturk, L., Cakmak, I. 2010. Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J. Cereal Sci. 52:342–349.CrossRefGoogle Scholar
  15. Gupta, P.K., Varshney, R.K., Sharma, P.C., Ramesh, B., 1999. Molecular markers and their applications in wheat breeding. Plant Breed. 118:369–390.CrossRefGoogle Scholar
  16. Lelley, T., Stachel, M., Grausgruber, H., Vollmann, J. 2000. Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668.CrossRefGoogle Scholar
  17. Manifesto, M.M., Schlatter, A.S., Hopp, H.E., Suarez, E.Y., Dubcovky, J. 2001. Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci. 41:682–690.CrossRefGoogle Scholar
  18. Martos, V., Royo, C., Rharrabti, Y., Garcia del Moral, L.F. 2005. Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crop. Res. 91:107–116.CrossRefGoogle Scholar
  19. Ng, P.K.W., Scanlon, M.G., Bushuk, W. 1988. A catalog of biochemical fingerprints of registered Canadian wheat cultivars by electrophoresis and high-performance liquid chromatography. Food Science Department, University of Manitoba, Winnipeg, Manitoba, Canada.Google Scholar
  20. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalsky, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2:225–238.CrossRefGoogle Scholar
  21. Pruska-Kedzior, A., Kedzior, Z., Klockiewicz-Kaminska, E. 2008. Comparison of viscoelastic properties of gluten from spelt and common wheat. Eur. Food Res. Technol. 227:199–207.CrossRefGoogle Scholar
  22. Saitou, N., Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425.Google Scholar
  23. Schober, T.J., Clarke, C.I., Kuhn, M. 2002. Characterization of functional properties of gluten proteins in spelt cultivars using rheological and quality factor measurements. Cereal Chem. 79:408–417.CrossRefGoogle Scholar
  24. Schober, T.J., Kuhn, M. 2003. Capillary zone electrophoresis for gliadin separation: Applications in a spelt breeding program. Eur. Food Res. Technol. 217:350–359.CrossRefGoogle Scholar
  25. Schober, T.J., Bean, S.R., Kuhn, M. 2006. Gluten proteins from spelt (Triticum aestivum ssp. spelta) cultivars: A rheological and size-exclusion high-performance liquid chromatography study. J. Cereal Sci. 44:161–173.CrossRefGoogle Scholar
  26. von Büren, M., Lüthy, J., Hübner, P. 2000. A spelt-specific _-gliadin gene: Discovery and detection. Theor. Appl. Genet. 100:271–279.CrossRefGoogle Scholar
  27. von Büren, M., Stadler, M., Lüthy, J. 2001. Detection of wheat adulteration of spelt flour and products by PCR. Eur. Food Res. Technol. 212:234–239.CrossRefGoogle Scholar
  28. White, J., Law, J.R., MacKay, I., Chalmers, K.J., Smith, J.S.C., Kilian, A., Powell, W. 2008. The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor. Appl. Genet. 116:439–453.CrossRefGoogle Scholar
  29. Wieser, H. 2000. Comparative investigations of gluten proteins from different wheat species. I. Qualitative and quantitative composition of gluten protein types. Eur. Food Res. Technol. 211:262–268.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

Authors and Affiliations

  • G. Gulyás
    • 1
    Email author
  • M. Rakszegi
    • 1
  • Z. Bognár
    • 1
  • L. Láng
    • 1
  • Z. Bedő
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations