Cereal Research Communications

, Volume 40, Issue 2, pp 159–184 | Cite as

New Aspects in Quality Related Wheat Research: 1. Challenges and Achievements

  • F. BékésEmail author


The aim of this two-part review is to highlight some of the numerous newer aspects of quality related wheat research and its achievements in the last two decades. In the first part — after a short introduction highlighting the essential need of quality improvement and its changing and widening meaning — a brief section describes directions of the more and multi-interdisciplinary wheat quality oriented research with special emphasis on the “omics”-type of population-based strategies and width the enlarging gap between breeding — and industry oriented quality research and its consequences. These general comments are followed by the session describing our understanding of the role of components of flour determining bread-making. The first two sections of the second part of the review overlook the new directions of quality related basic and applied research in breeding and breeding as well as in the wheat industry, including genetic, molecular biological, biochemical chemical, instrumental and model-making/predictive methodologies. A brief coverage of the directions and achievement in the more and more important two non-traditional quality areas, the nutrition- and health-related quality attributes are followed by a short conclusion and speculation on future direction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, O.D., Békés, F., Gras, P.W., Kuhl, J., Tam, A. 1996a. HMW glutenins: Structure function relationships step by step. In: Wrigley, C.W. (ed.), Proc. 6th Int. Workshop on Gluten Proteins. RACI, Melbourne, Australia, pp. 195–198.Google Scholar
  2. Anderson, O.D., Kuhl, J., Tam, A. 1996b. Construction and expression of a synthetic storage protein gene. Gene 174:51–58.CrossRefPubMedGoogle Scholar
  3. Anderson, O.D., Békés, F. 2011. Incorporation of high-molecular-weight glutenin subunits into doughs using 2 gram mixograph and extensigraph. J. Cereal Sci. 54:288–295.CrossRefGoogle Scholar
  4. Anderson, O.D., Békés, F., D’Ovidio, R. 2011. Effects of specific domains of high-molecular-weight glutenin subunits on dough properties by an in vitro assay. J. Cereal. Sci. 54:280–287.CrossRefGoogle Scholar
  5. Appels, R., Gras, P.W., Clarke, B.C., Anderssen, R., Wesley, I., Békés, F. 2000. Molecular genetic studies on processing traits of wheat flour. Euphytica 119:49–54.CrossRefGoogle Scholar
  6. Appels, R., Gustafson, J.P., O’Brien, L. 2001. Wheat breeding in the new century: Applying molecular genetic analysis of key quality and agronomic traits. Aust. J. Agric. Res. 52:1043–1417.CrossRefGoogle Scholar
  7. Balázs, G., Baracskai, I., Nádosi, M., Harasztos, A., Békés, F., Tömösközi, S. 2011. Lab-on-a-chip technology in cereal science: Analytical properties and possible application areas. Acta Alimentaria DOI:
  8. Bangur, R., Batey, I.L., McKenzie, MacRitchie, F. 1997. Dependence of extensograph parameters on wheat protein composition measured by SE-HPLC. J. Cereal Sci. 25:237–241.CrossRefGoogle Scholar
  9. Basford, K.E., Cooper, M. 1998. Genotype-environment interactions and some considerations of their implications for wheat breeding in Australia. Austr. J. Agric. Res. 49:153–174.CrossRefGoogle Scholar
  10. Bean, R.S., Lyne, R.K., Tilley, K.A., Chung, O.K., Lookhart, G.L. 1998. A rapid method for quantitation of insoluble polymeric proteins in flour. Cereal Chem. 75:374–379.CrossRefGoogle Scholar
  11. Beasley, H.L., Uthayakumaran, S., Stoddard, F.L., Partidge, S.J., Daqiq, L., Chong, P., Békés, F. 2002. Synergistic and additive effects of three HMW-GS loci. II. Effects on wheat dough functionality and end-use quality. Cereal Chem. 79:301–307.CrossRefGoogle Scholar
  12. Beecher, B., Bettge, A., Smidansky, E., Giroux, M.J. 2002. Expression of wild-type pinB sequence in transgenic wheat complements a hard phenotype. Theor. Appl. Genet. 105:870–877.CrossRefPubMedGoogle Scholar
  13. Békés, F. 2011. Studying the protein-protein interactions and functional properties of the wheat storage proteins in a gluten free model system. Agro Food Ind. High-tech. 22:12–16.Google Scholar
  14. Békés, F. 2012. New aspects in quality related wheat research: II. New methodologies for better quality wheat. Cereal Res. Commun. (In press)Google Scholar
  15. Békés, F., Anderson, O., Gras, P.W., Gupta, R.B., Tam, A., Wrigley, C.W., Appels, R. 1994a. The contribution to mixing properties of 1D glutenin subunits expressed in a bacterial system. In: Henry, R., Ronalds, J. (eds), Proc.’Improvement of Cereal Quality by Genetic Engineering’. Plenum Press, New York, USA, pp. 97–104.CrossRefGoogle Scholar
  16. Békés, F., Gras, P.W., Gupta, R.B. 1994b. Mixing properties as a measure of reversible reduction/oxidation of doughs. Cereal Chem. 71:44–50.Google Scholar
  17. Békés, F., Gras, P.W., Gupta, R.B., Hickman, D.R., Tatham, A.S. 1994c. Effects of 1Bx20 HMW glutenin on mixing properties. J. Cereal Sci. 19:3–7.CrossRefGoogle Scholar
  18. Békés, F., Larroque, O., Hart, P., O’Riordan, B., Miskelly, D., Baczynski, M., Wrigley, C. 1998. Non-linear behaviour of grain and flour blends made from dissimilar components. In: Wooton, M., Batey, I.L., Wrigley, C.W. (eds), Proc. 11th Internat. ICC Cereal and Bread Congress, RACI, Melbourne, Australia, pp. 464–469.Google Scholar
  19. Békés, F., Gras, P.W. 1999. In vitro studies on gluten protein functionality. Cereal Foods World 44:580–586.Google Scholar
  20. Békés, F., Haraszti, R., Mann, G., Varga, J., Tömösközi, S., Salgó, A. 2002. New challenges for the quality control. In: Proc. ICC Conf. 2002, BME, Budapest, Hungary, pp. 213–217.Google Scholar
  21. Bhandari, D.G., Church, S., Borthwick, A., Jensen, M.A. 2004. Automated varietal identification using Lab-on-a-chip technology. Proc.12th ICC Cereal and Bread Congress, ICC Vienna, Austria, pp. 23–26.Google Scholar
  22. Blumenthal, C.S., Barlow, E.W.R., Wrigley, C.W., Batey, I.L., Békés, F., Lawrence, G.J., Moss, H.J., Shepherd, K.W. 1993. Growth environment and wheat quality: The effect of heat stress on dough properties and gluten properties. J. Cereal Sci. 18:3–21.CrossRefGoogle Scholar
  23. Blumenthal, C.S., Békés, F., Gras, P.W., Barlow, E.W.R., Wrigley, C.W. 1995. Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chem. 72:539–544.Google Scholar
  24. Borneo, R., Khan, K. 1999. Protein changes during various stages of breadmaking of flour spring wheats. Cereal Chem. 76:711–717.CrossRefGoogle Scholar
  25. Braly, J., Hogganm, R. 2002. Dangerous Grains. Why Gluten Cereal Grains May Be Hazardous to Your Health. Penguin Group, New York, NY, USA.Google Scholar
  26. Branlard, G., Dardevet, M. 1985. Diversity of grain proteins and bread wheat quality I. Correlation between gliadin bands and flour quality characteristics. J. Cereal Sci. 3:329–343.CrossRefGoogle Scholar
  27. Buonocore, F., Bertini, L., Ronchi, C., Greenfield, J., Békés, F., Tatham, A.S., Shewry, P.R. 1997. Expression and functional analysis of Mr 57000 peptides derived from wheat HMW subunit 1Dx5. J. Cereal Sci. 29:209–216.Google Scholar
  28. Bushuk, W. 1985. Flour proteins: Structure and functionality in dough and bread. Cereal Foods World 30:447–455.Google Scholar
  29. Bushuk, W. 1998. Wheat breeding for end-product use. Euphytica 100:137–145.CrossRefGoogle Scholar
  30. Bushuk, W., Békés, F. 2002. Contribution of protein to flour quality. In: Salgó, A. Tömösközi, S., Lásztity, R. (eds), Proc. Novel Raw Materials, Technologies and Products — New Challenge for the Quality Control. ICC, Vienna, Austria, pp. 14–19.Google Scholar
  31. Butow, B.J., Tatham, A.S., Shewry, P.R., Savage, A.W.J., Darlington, H., Rooke, L., Békés, F. 2003a. Creating a balance — the incorporation of HMW-GS into transgenic wheat lines. J. Cereal Sci. 38:181–187.CrossRefGoogle Scholar
  32. Butow, B.J., Ma, W., Gale, K.R., Cornish, G.B., Rampling, L., Larroque, O., Morell, M.K., Békés, F. 2003b. Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high molecular weight glutenin allele has a major impact on wheat flour dough strength. Theor. Appl. Genet. 107:1524–1532.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cavanagh, C., Morell, M., Mackay, I., Powell, W. 2008. From mutations to MAGIC: Resources for gene discovery, validation and delivery in crop plants. Cur. Op. Plant Biol. 11:215–221.CrossRefGoogle Scholar
  34. Cornish, G.B., Békés, F., Martin, D.J., Allen, H. 2001a. Seed storage proteins linked to quality traits in Australian wheat crosses. Aust. J. Agric. Res. 52:1339–1348.CrossRefGoogle Scholar
  35. Cornish, G.B., Siriamornpun, S., Skylass, D., Békés, F., Wrigley, C.W., Wooton, M. 2001b. HMW and LMW glutenin subunit and gliadin protein markers in genetic maps. Aust. J. Agric. Res. 52:1161–1171.CrossRefGoogle Scholar
  36. Cuniberti, M.B., Roth, M.R., MacRitchie, F. 2003. Protein composition-functionality relationships for a set of Argentinean wheats. Cereal Chem. 80:132–134.CrossRefGoogle Scholar
  37. Cunsolo, V., Foti, S., Saletti, R., Gilbert, S., Tatham, A.S., Shewry, P.R. 2002. Investigation and correction of the gene-derived sequence of glutenin subunit 1Dx2 by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 16:1911–1918.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cunsolo, V., Foti, S., Saletti, R., Gilbert, S., Tatham, A.S., Shewry, P.R. 2003. Structural studies of glutenin subunits 1Dy10 and 1Dy12 by matrix-assisted laser desorption/ionization mass spectrometry and high-performance liquid chromatography/electrospray ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 17:442–454.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Cunsolo, V., Foti, S., Saletti, R., Gilbert, S., Tatham, A.S., Shewry, P.R. 2004. Structural studies of the allelic wheat glutenin subunits 1Bx7 and 1Bx20 by matrix-assisted laser desorption/ionization mass spectrometry and high-performance liquid chromatography/electrospray ionization mass spectrometry. J. Mass Spectrom. 39:66–78.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Daqiq, L., Fellows, C.M., Békés, F., Lees, E. 2007. Methodologies for symmetrical FFF analysis of polymeric glutenin. J. Textural Studies 38:273–296.CrossRefGoogle Scholar
  41. Davis, W. 2011. Wheat Belly: Loose the Wheat and Find Your Path Back to Health. Rodale Books Inc., New York, USA.Google Scholar
  42. Dencic, D., Mladenov, N., Kobiljski, B. 2011. Effects of genotype and environment on breadmaking quality in wheat. Int. J. Plant Prod. 5:71–82.Google Scholar
  43. Dimler, R.J. 1965. Exploring the structure of proteins in wheat gluten. Baker’s Dig. 39:35–42.Google Scholar
  44. Don, C., Lichtendonk, W.J., Pfijter, J.J., Hamer, R.J. 2003a. Glutenin macropolymer: A gel formed by glutenin particles. J. Cereal Sci. 37:1–7.CrossRefGoogle Scholar
  45. Don, C., Lichtendonk, W.J., Plijter, J.J., Hamer, R.J. 2003b. Understanding the link between GMP and dough: From glutenin particles in flour towards developed dough. J. Cereal Sci. 38:157–165.CrossRefGoogle Scholar
  46. Dowell, F.E., Maghirang, E.B., Pierce, R., Lockhart, G.R., Bean, S.R., Xie, X., Caley, M.S., Wilson, J.D., Seabourn, B.W., Ram, D., Park, S.H., Chung, O.K. 2008. Relationship of bread quality to kernel, flour, and dough properties. Cereal Chem. 85:82–91.CrossRefGoogle Scholar
  47. Dworschak, R.G., Standing, K.G., Preston, K.R., Marchylo, B.A., Nightingale, M.J., Stevenson, S.G., Hatcher, D.W. 1998. Analysis of wheat gluten proteins by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 33:429–435.CrossRefGoogle Scholar
  48. Eliasson, A.C., Larsson, K. 1993. Cereals in Breadmaking: A Molecular Colloidal Approach. Marcel Dekker, New York, USA.Google Scholar
  49. Ferry, J.D. 1961. Viscoelastic Properties of Polymers. Wiley, New York, USA.CrossRefGoogle Scholar
  50. Fido, R., Békés, F., Gras, P.W., Tatham, A. 1997. The effects of added gliadin classes on the mixing properties and extension of dough. J. Cereal Sci. 26:271–277.CrossRefGoogle Scholar
  51. Fincher, G.B., Stone, B.A. 1986. Cell walls and their components in cereal grain technology. In: Pomeranz, Y. (ed.), Advances in Cereal Science and Technology. Vol. VII. AACC. St. Paul, MN, USA, pp. 207–295.Google Scholar
  52. Fincher, G.B., Stone, P.A. 2004. Chemistry of nonstarch polysaccharides. In: Wrigley, C., Corke, H., Walker, C. (eds), Encyclopedia of Grain Science. Vol. 1. Elsevier. Oxford, UK, pp. 206–223.CrossRefGoogle Scholar
  53. Finney, K.F., Baremore, M.A. 1948. Loaf volume and protein content of hard winter and spring wheats. Cereal Chem. 25:291–312.Google Scholar
  54. Finney, K.F., Jones, B.L., Shogren, M.D. 1982. Functional (breadmaking) properties of wheat protein fractions obtained by ultracentrifugation. Cereal Chem. 59:449–453.Google Scholar
  55. Ford, R. 2008. The Gluten Syndrome. Is wheat causing you harm? RRS Global LT. Christchurch, New Zealand.Google Scholar
  56. Fowler, D.B., de la Roche, I.A. 1975. Wheat quality evaluation. 3. Influence of genotype and environment. Can. J. Plant Sci. 55:263–269.CrossRefGoogle Scholar
  57. Fritz, D.D. 2005. International wheat market — overview and trends. In: Chung, O.K., Lookhart, G.L. (eds), Standing on the Shoulders of Giants — What we Have Learned and where we are Going. Proc. 3rd Internat. Wheat Quality Conf., Manhattan. Grain Industry Alliance, Manhattan, KS, USA, pp. 27–32.Google Scholar
  58. Gallagher, E., Gormley, T.R., Arendt, E.K. 2004. Crust and crumb characteristics of gluten-free breads. J. Food Eng. 56:153–161.CrossRefGoogle Scholar
  59. Gan, Z., Angold, R.E., Williams, M.R., Ellis, P.R., Vaughan, J.G., Galliard, T. 1990. The microstructure of gas retention of bread dough. J. Cereal Sci. 12:15–24.CrossRefGoogle Scholar
  60. Gan, Z., Ellis, P.R., Schofield, J.D. 1995. Gas cell stabilization and gas retention in wheat bread dough. J. Cereal Sci. 21:215–230.CrossRefGoogle Scholar
  61. Gao, L., Ma, W., Chen, J., Wang, K., Li, J., Wang, S., Békés, F., Appels, R., Yan, Y. 2009a. Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. J. Agric. Food Chem. 58:2777–2786.CrossRefGoogle Scholar
  62. Gao, L., Wang, A., Li, X., Dong, K., Wang, K., Appels, R., Ma, W., Yan, Y. 2009b. Wheat quality related differential expressions of albumins and globulins revealed by two-dimensional difference gel electrophoresis (2-D DIGE). J. of Proteomics 73:279–296.CrossRefGoogle Scholar
  63. Gautier, M.F., Aleman, M.E., Guirao, A., Marion, D., Joudrier, P. 1994. Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol. Biol. 25:43–57.CrossRefPubMedGoogle Scholar
  64. Georget, D.M., Underwood-Toscano, C., Powers, S.J., Shewry, P.R., Belton, P.S. 2008. Effect of variety and environmental factors on gluten proteins: An analytical, spectroscopic, and rheological study. J. Agric. Food Chem. 56:1172–1179.CrossRefPubMedGoogle Scholar
  65. Gras, P.W., Békés, F. 1996. Small-scale testing: The development of instrumentation and application as a research tool. In: Wrigley, C.W. (ed.), Proc. 6th Int. Gluten Workshop. RACI, Melbourne, Australia, pp. 506–510.Google Scholar
  66. Gras, P.W., Ellison, F.W., Békés, F. 1997. Quality evaluation on a micro-scale. In: Steele, J.I., Chung, O.K. (eds), Proc. Int. Wheat Quality Conf., Manhattan, KS. GIA, Manhattan, KS, USA, pp. 161–172.Google Scholar
  67. Gras, P.W., Anderssen, R.S., Keentok, M., Békés, F., Appels, R. 2001. Gluten protein functionality in wheat flour processing: A review. Aust. J. Agric. Res. 52:1311–1323.CrossRefGoogle Scholar
  68. Graybosch, R.A., Peterson, C.J., Shelton, D.R., Baenziger, P.S. 1996. Genotypic and environmental modification of wheat flour protein composition in relation to end-use quality. Crop Sci 36:296–300.CrossRefGoogle Scholar
  69. Greenfield, J.A., Ross-Murphy, S.B., Tamás, L., Békés, F., Halford, N.G., Tatham, A.S., Shewry, P.R. 1997. Rheological properties of monomeric and polymeric forms of C-Hordein, a sulphur-poor prolamin of barley. J. Cereal. Sci. 29:233–236.Google Scholar
  70. Greenwell, P., Schofield, J.D. 1986. A starch granule protein associated with endosperm softness in wheat. Cereal Chem. 63:379–380.Google Scholar
  71. Greer, E.N., Hinton, J.J.C. 1950. The two types of wheat endosperm. Nature 165:746–748.CrossRefPubMedGoogle Scholar
  72. Gupta, R.B., Batey, I.L., MacRitchie, F. 1992. Relationships between protein composition and functional properties of wheat flour. Cereal Chem. 69:125–131.Google Scholar
  73. Gupta, R.B., Khan, K., MacRitchie, F. 1993. Biochemical basis of flour properties in bread wheat. I. Effects of variation in the quantity and size distribution of polymeric protein. J. Cereal Sci. 18:23–41.CrossRefGoogle Scholar
  74. Gupta, R.B., Paul, J.G., Cornish, G.B., Palmer, G.A., Békés, F., Rathjen, A.J. 1994. Allelic variation in glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheats: Its additive and interaction effects on dough properties. J. Cereal Sci. 19:9–19.CrossRefGoogle Scholar
  75. Hogg, A.C., Beecher, B., Martin, J.M., Meyer, F., Talbert, L., Lanning, S., Giroux, M.J. 2005. Hard wheat milling and bread baking traits affected by the seed-specific overexpression of puroindolines. Crop Sci. 45:871–878.Google Scholar
  76. Hoseney, R.C. 1986. Principles of Cereal Science and Technology. AACC St. Paul, MN, USA.Google Scholar
  77. Hoseney, R.C. 1992. Principles of Cereal Science and Technology. AACC St. Paul, MN, USA.Google Scholar
  78. Hoseney, R.C., Finney, K.F., Shogren, M.D., Pomeranz, Y. 1969. Functional (breadmaking) and biochemical properties of wheat flour components. II. Role of water-solubles. Cereal Chem. 46:117–125.Google Scholar
  79. Hoseney, R.C., Rogers, D.E. 1990. The formation and properties of wheat flour dough. Crit. Rev. Food Sci. Nutr. 29:73–93.CrossRefPubMedGoogle Scholar
  80. Hristov, N., Mladenov, N., Djuric, V., Kondic-Spika, A., Marjanovic-Jeromela, A., Simic, D. 2010. Genotype by environment interactions in wheat quality breeding programs in southeast Europe. Euphytica 174:315–324.CrossRefGoogle Scholar
  81. Islam, S., Ma, W., Yan, G., Békés, F., Appels, R. 2011. Modifying processing and health attributes of wheat bread through changes in composition, genetics and breeding. In: Cauvain, S.P. (ed.), Bread Making. Improving Quality. 2nd Edition. CRC Press, Boston, New York, USA (in press)Google Scholar
  82. Jia, Y.Q., Fabre, J.L., Aussenac, T. 1996a. Effects of growing location on response of protein polymerization to increased nitrogen fertilization for the common wheat cultivar Soissons: Relationship with some aspects of the breadmaking quality. Cereal Chem. 73:526–532.Google Scholar
  83. Jia, Y.Q., Masbou, V., Aussenac, T., Fabre, J., Debaeke, P. 1996b. Effects of nitrogen fertilization and maturation conditions on protein aggregates and on the breadmaking quality of Soissons, a common wheat cultivar. Cereal Chem. 73:123–130.Google Scholar
  84. Jones, B., Morris, C., Békés, F., Wrigley, C.W. 2006. Proteins that complement the roles of gliadin and glutenin. In: Wrigley, C.W., Békés, F., Bushuk, W. (eds), Gliadin and Glutenin: The Unique Balance of Wheat Quality. AACC Int., St. Paul, MN, USA, pp. 413–446.CrossRefGoogle Scholar
  85. Juhász, A., Larroque, O.R., Tamás, L., Hsam, S.L.K., Zeller, F.J., Békés, F., Bedõ, Z. 2003. Bánkúti 1201 — an old Hungarian wheat variety with special storage protein composition. Theor. Appl. Genet. 107:697–704.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Juhász, A., Islam, S., Moolhuijzen, P., Bellgard, M., Appels, R., Békés, F. 2012. The wheat grain proteome. In: Toldrá, F., Nollet, L.M.L. (eds), Proteomics in Foods: Principles and Applications. Chapter 23. Springer, New York, USA. (In press)Google Scholar
  87. Kammholz, S.J., Campbell, A.W., Sutherland, M.W., Hollamby, G.J., Martin, P.J., Eastwood, R.F., Barclay, I., Wilson, R.E., Brennan, P.S., Sheppard, J.A. 2001. Establishment and characterisation of wheat genetic mapping populations. Aust. J. Agric. Res. 52:1079–1088.CrossRefGoogle Scholar
  88. Khan, K., Huckle, L. 1992. Use of multistacking gels in sodium dodecyl sulfate-polyacrylamide gel electrophoresis to reveal polydispersity, aggregation and disaggregation of the glutenin protein fraction. Cereal Chem. 69:686–687.Google Scholar
  89. Khatkar, B.S., Fido, R.J., Tatham, A.S., Schofield, J.D. 2002a. Functional properties of wheat gliadins. I. Effects on mixing characteristics and bread making quality. J. Cereal Sci. 35:299–306.CrossRefGoogle Scholar
  90. Khatkar, B.S., Fido, R.J., Tatham, A.S., Schofield, J.D. 2002b. Functional properties of wheat gliadins. II. Effects on dynamic rheological properties of wheat gluten. J. Cereal Sci. 35:307–313.CrossRefGoogle Scholar
  91. Konarev, A.V., Beaudoin, F., Marsh, J., Vilkova, N.A., Nefedova, L.I., Sivri, D., Köksel, H., Shewry, P.R., Lovegrove, A. 2011. Characterization of a glutenin-specific serine proteinase of Sunn bug Eurygaster integricepts Put. J. Agric. Food Chem. 59:2462–2470CrossRefPubMedGoogle Scholar
  92. Krishnamurthy, K., Giroux, M.J. 2001. Expression of wheat puroindoline genes in transgenic rice confers grain softness. Nat. Biotechnol. 19:162–166.CrossRefPubMedGoogle Scholar
  93. Labuschagne, M.T., Koen, E., Dessalegn, T. 2004. Use of size exclusion high-performance liquid chromatography for wheat quality prediction in Ethiopia. Euphytica 81:533–537.Google Scholar
  94. Lafiandra, D., Masci, S., Blumenthal, C., Wrigley, C.W. 1999. The formation of glutenin polymer in practice. Cereal Foods World 44:572–578.Google Scholar
  95. Larroque, O.R., Békés, F., Wrigley, C.W., Rathmell, W.G. 2000. Analysis of gluten proteins in grain and in flour blends by RP-HPLC. In: Shewry, P.R., Tatham, A.S. (eds), Wheat Gluten. Royal Soc. Chem. Cambridge, UK, pp. 136–139.Google Scholar
  96. Lawrence, G.J., MacRitchie, F., Wrigley, C.W. 1988. Dough baking and baking quality of wheat lines different in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. J. Cereal Sci. 21:109–112.CrossRefGoogle Scholar
  97. Lee, K.M., Shroyer, J.P., Herrman, T.J., Lingenfelser, J. 2006. Blending hard white wheat to improve grain yield and end-use per-formances. Crop Sci. 46:1124–1129.CrossRefGoogle Scholar
  98. Lindsay, M.P., Skerritt, J.H. 1999. The glutenin macropolymer of wheat flour doughs: structure-function perspective. Trends Food Sci. Technol. 10:247–253.CrossRefGoogle Scholar
  99. Liu, L., Wang, A., Appels, R., Ma, J., Xia, X., Lan, P., He, Z., Békés, F., Yan, Y., Ma W. 2009. A MALDI-TOF based analysis of high molecular weight glutenin subunits for wheat breeding. J. Cereal Sci. 50:295–301.CrossRefGoogle Scholar
  100. Liu, L., Ikeda, T.M., Branlard, G., Peña, R.J., Rogers, W.J., Lerner, S.E., Kolman, M.A., Xia, X., Wang, L., Ma, W., Appels, R., Yoshida, H., Wang, A., Yan Y., He, Z. 2010. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biol. 10:124–141.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Ma, M., Wang, A., Li, L., Békés, F., Newberry, M., Gao, L., Ma, J., Islam, S., Yan, Z., He, Y., Xia, X., Appels, R. 2009. High resolution identification of high and low molecular weight glutenin alleles by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in common wheat (Triticum aestivum L.) In: Branlard, G. (ed.), Gluten Proteins 2009. Proc. 10th Int. Gluten Workshop. INRA. Clermont-Ferrand, France, pp. 271–275.Google Scholar
  102. MacRitchie, F. 1978. Differences in baking quality between wheat flours. J. Food Technol. 13:187–194.CrossRefGoogle Scholar
  103. MacRitchie, F. 1980. Studies of gluten protein from wheat flours. Cereal Foods World 25:382–385.Google Scholar
  104. MacRitchie, F. 1985. Studies of the methodology for fractionation and reconstitution of wheat flours. J. Cereal Sci. 3:221–230.CrossRefGoogle Scholar
  105. MacRitchie, F. 1987. Evaluation of contributions from wheat protein fractions to dough mixing and breadmaking. J. Cereal Sci. 6:257–268.CrossRefGoogle Scholar
  106. MacRitchie, F. 1992. Physicochemical properties of wheat proteins in relation to functionality. In: Kinsella, J. (ed.), Advances in Food and Nutrition Research, Vol. 36. Academic Press, San Diego, USA, pp. 1–87.Google Scholar
  107. MacRitchie, F. 2005. The structure of gliadin and glutenin. In: Chung, O.K., Lookhart, G.L. (eds), Proc. 3rd Int. Wheat Quality Conf., “Standing on the shoulders of giants — What we have learned and where we are going?” Grain Industry Alliance, Manhattan, KS, USA, pp. 175–180.Google Scholar
  108. MacRitchie, F., Kasarda, D.D., Kuzmicky, D.D. 1991. Characterization of wheat protein fractions differing in contributions to breadmaking quality. Cereal Chem. 68:122–130.Google Scholar
  109. Majoul, T., Bancel, E., Triboi, T., Hamida, J.B., Branlard, G. 2004. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from non-prolamins fraction. Proteomics 4:505–513.CrossRefPubMedGoogle Scholar
  110. Manz, A., Miyahara, Y., Miura, J., Watanabe, Y., Miyagi, H., Sato, K. 1990. Design of on open-tubular column liquid chromatograph using silicon chip technology. Sensors Actuators 1:249–255.CrossRefGoogle Scholar
  111. Mariani, B.M., D’Egidio, M.G., Novaro, P. 1995. Durum wheat quality evaluation: Influence of genotype and environment. Cereal Chem. 72:194–197.Google Scholar
  112. Miskelly, D., Batey, I.L., Suter, D.A.I. 2010. Processing wheat to optimise product quality. In: Wrigley, C.W., Batey, I.L. (eds), Cereal Grains, Assessing and Managing Quality. CRC Press, Boca Raton, USA, pp. 431–457.CrossRefGoogle Scholar
  113. Moore, M.M., Schober, T.J., Dockery, P., Arendt, E.K. 2004. Textural comparison of gluten-free and wheat based doughs, batters and breads. Cereal Chem. 81:567–575.CrossRefGoogle Scholar
  114. Morris, C.F. 2002. Puroindolines: The molecular basis of wheat grain hardness. Plant Mol. Biol. 48:633–647.CrossRefPubMedGoogle Scholar
  115. Murray, D.J., Békés, F., Gras, P.W., Copeland, L.A., Savage, A.W.J., Tatham, A.S. 1999. Hydrogen bonding and the structure/function relationships of wheat flour gliadins. In: Tarr, A.W., Ross, A.S., Wrigley, C.W. (eds), Proc. 48th RACI Conference. RACI, Melbourne, Australia, pp. 12–16.Google Scholar
  116. O’Brien, L. 1999. Genotype and environment effects on feed grain quality. Austr. J. Agric. Res. 50:703–720.CrossRefGoogle Scholar
  117. Ohm, J.B., Hareland, G.A., Simsek, S., Seabourn, S., Maghirang, E., Dowell, F. 2010. Molecular weight distribution of proteins in hard red spring wheat: Relationship to quality parameters and intra-sample uniformity. Cereal Chem. 87:553–560.CrossRefGoogle Scholar
  118. Oliver, J.R., Allen, H.M. 1992. The prediction of bread baking performance using the Farinograph and Extensograph. J. Cereal Sci. 15:79–89.CrossRefGoogle Scholar
  119. Orth, R.A., Bushuk, W. 1972. A comparative study of the proteins of wheats of diverse baking properties. Cereal Chem. 49:268–275.Google Scholar
  120. Osborne, B.G., Henry, R.J., Southan, M.D. 2007. Assessment of commercial milling potential of hard wheat by measurement of the rheological properties of whole grain. J. Cereal Sci. 45:122–127.CrossRefGoogle Scholar
  121. Oszvald, M., Tömösközi, S., Tamás, L., Békés, F. 2008a. Preliminary study to investigate the role of rice and added wheat protein in the mixing properties of different rice flours. Acta Alim. 37:399–408.CrossRefGoogle Scholar
  122. Oszvald, M., Tömösközi, S., Tamás, L., Keresztényi, E., Békés, F. 2008b. Characterization of rice proteins by size exclusion high performance liquid chromatography. J. Cereal Sci. 48:68–76.CrossRefGoogle Scholar
  123. Oszvald, M., Tömösközi, S., Tamás, L., Békés, F. 2009. Effects of wheat storage proteins on the functional properties of rice dough. J. Agric. Food Chem. 57:10442–10449.CrossRefPubMedGoogle Scholar
  124. Oszvald, M., Balázs, G., Tömösközi, S., Békés, F., Tamás, L. 2011. Comparative study of the effect of incorporated individual wheat storage proteins on mixing properties of rice and wheat dough. J. Agric. Food Chem. 59:9664–9672.CrossRefPubMedGoogle Scholar
  125. Pareyt, B., Sean, M., Finnie, S.M., Putseys, J.A., Delcour, J.A. 2011. Lipids in bread making: Sources, interactions, and impact on bread quality. J. Cereal Sci. 54:266–279.CrossRefGoogle Scholar
  126. Park, S.H., Bean, S.P.K., Chung, O.K., Seib, P.A. 2006. Protein and protein composition in hard winter wheat flours and their relationship to breadmaking. Cereal Chem. 83:418–423.CrossRefGoogle Scholar
  127. Park, S.H., Wilson, J., Seabourn, J.D. 2009. Starch granule size distribution of hard red winter and hard red spring wheat: Its effects on mixing and breadmaking quality. J. Cereal Sci. 49:98–105.CrossRefGoogle Scholar
  128. Pena, R.J., Trethowan, R., Pfeiffer, W.H. van Ginkel, M. 2002. Quality (end-use) improvement in wheat: Compositional, genetic, and environmental factors. J. Crop Prod. 5:1–37.CrossRefGoogle Scholar
  129. Peterson, C.J., Graybosch, R.A., Baenziger, P.S., Grombacher, A.W. 1992. Genotype and environment effects on quality characteristics of hard red winter wheat. Crop Sci. 32:98–103.CrossRefGoogle Scholar
  130. Popineau, Y., Cornec, M., Lefebre, J., Marchylo, B. 1994. Influence of HMWGS on glutenin polymers and rheological properties of gluten and gluten subfractions of near-isogenic lines of wheat Sicco. J. Cereal Sci. 19:231–241.CrossRefGoogle Scholar
  131. Popineau, Y., Deshayes, G., Lefebvre, J., Fido, R., Tatham, A.S., Shewry, P.R. 2001. Prolamin aggregation, gluten viscoelasticity, and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx high molecular weight glutenin subunit transgenes. J. Agric. Food Chem. 49:395–401.CrossRefPubMedGoogle Scholar
  132. Rahman, S., Li, Z., Batey, I.L., Cochrane, M.P., Appels, R., Morell, M.K. 2000. Genetic alteration of starch functionality in wheat. J. Cereal Sci. 31:91–110.CrossRefGoogle Scholar
  133. Regina, A., Bird, A.R., Li, Z., Rahman, S., Mann, G., Chanliaud, E., Berbezy, P., Topping, D., Morell, M.K. 2007. Bioengineering cereal carbohydrates to improve human health. Cereal Food World 52:182–187.Google Scholar
  134. Rhazi, L., Bodard, A.L., Fathollahi, B., Aussenac, T., Maforimbo, E., Skurray, G. 2009. High throughput micro chip-based separation and quantitation of high-molecular-weight glutenin subunits. J. Cereal Sci. 49:272–277.CrossRefGoogle Scholar
  135. Rooke, L., Békés, F., Fido, R., Barro, F., Gras, P., Tatham, A.S., Barcelo, P., Lazzeri, P., Shewry, P.R. 1999. Over-expression of a gluten protein in transgenic wheat results in greatly increased dough strength. J. Cereal Sci. 30:115–120.CrossRefGoogle Scholar
  136. Sapirstein H.D., Fu, B.X. 1996. Characterisation of an extra-strong wheat: Functionality of 1) gliadin- and glutenin-rich fractions, 2) total HMW and LMW subunits of glutenin assessed by reduction-reoxidation. In: Wrigley, C.W. (ed.), Proc. 6th Int. Workshop on Gluten Proteins. RACI, Melbourne, Australia, pp. 302–306.Google Scholar
  137. Sapirstein, H.D., Fu, B.X. 1998. Intercultivar variation in the quantity of monomeric proteins, soluble and insoluble glutenin, and residue protein in wheat flour and relationships to breadmaking quality. Cereal Chem. 75:500–507.CrossRefGoogle Scholar
  138. Sarkki, M.L. 1980. Wheat gluten. In: Inglett, G.E., Munk, L. (eds), Cereals for Food and Beverages. Recent Progress in Cereal Chemistry and Technology. Academic Press, New York, USA, pp. 155–159.CrossRefGoogle Scholar
  139. Shewry, P.R., Tatham, A.S., Halford, N.G. 1999. The prolamins of the Triticeae. In: Shewry, P.R., Casey, R. (eds), Seed Proteins. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 35–78.CrossRefGoogle Scholar
  140. Shewry, P.R., Halford, N.G. 2002. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 53:947–958.CrossRefGoogle Scholar
  141. Shewry, P.R., Lookhart, G.L. (eds) 2003. Wheat Gluten Protein Analysis. AACCI, St. Paul, MN, USA.Google Scholar
  142. Shewry, P.R., Lafiandra, D., Tamás, L., Békés, F. 2006. Chapter 12. Genetic manipulation of gluten structure and function. In: Wrigley, C.W., Békés, F., Bushuk, W. (eds), Gliadin and Glutenin. The Unique Balance of Wheat Quality. AACCI Press, St. Paul, MN, USA, pp. 363–386.CrossRefGoogle Scholar
  143. Shewry, P.R., D’Ovidio, R., Lafiandra, D., Jenkins, J.A., Mills, N.F., Békés, F. 2009. Wheat grain proteins. In: Khan, K., Shewry, P.R. (eds), Wheat Chemistry and Technology. AACC Press, St. Paul, MN, USA, pp. 223–298.CrossRefGoogle Scholar
  144. Singh, H., MacRitchie, F. 2001. Application of polymer science to properties of gluten. J. Cereal Sci. 33:231–243.CrossRefGoogle Scholar
  145. Sissons, M.J., Békés, F., Skerritt, J.H. 1997. Isolation and functionality testing of LMW glutenin subunits. Cereal Chem. 75:30–36.CrossRefGoogle Scholar
  146. Sivri, D., Batey, I.L., Skylas, D.J., Daqiq, L., Wrigley, C.W. 2004. Changes in the composition and size distribution of endosperm protein from bug-damaged wheats. Austr. J. Agric. Res. 55:1–7.CrossRefGoogle Scholar
  147. Skylas, D.J., Cordwell, S.J., Hains, P.G., Larsen, M.R., Basseal, D.J., Walsh, B.J., Blumenthal, C., Rathmell, W.G., Copeland, L., Wrigley, C.W. 2002. Heat shock of wheat during grain filling: Characterisation of proteins associated with heat-tolerance using a proteome approach. J. Cereal Sci. 35:175–188.CrossRefGoogle Scholar
  148. Southan, M., MacRitchie, M. 1999. Molecular weight distribution of wheat proteins. Cereal Chem. 76:827–836.CrossRefGoogle Scholar
  149. Sroan, B.S., Bean, S.R., MacRitchie, F. 2009. Mechanism of gas cell stabilization in bread making. I. The primary gluten-starch matrix. J. Cereal Sci. 49:32–40.CrossRefGoogle Scholar
  150. Sroan, B.S., MacRitchie, F. 2009. Mechanism of gas cell stabilization in bread making. II. The secondary liquid lamellae. J. Cereal Sci. 49:41–46.CrossRefGoogle Scholar
  151. Stevenson, S.G., Preston, K.R. 1996. Flow field-flow fractionation of wheat proteins. J. Cereal Sci. 23:113–119.CrossRefGoogle Scholar
  152. Stone, P.J., Nicholas, M.E. 1994. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Austr. J. of Plant Physiol. 21:887–900.Google Scholar
  153. Tamás, L., Békés, F., Greenfield, J., Tatham, A., Gras, P., Shewry, P.R., Appels, R. 1997. Heterologus expression and mixing studies on genetically modified C-Hordeins. J. Cereal Sci. 27:15–22.CrossRefGoogle Scholar
  154. Tamás, L., Gras, P.W., Solomon, R.G., Morell, M.K., Appels, R., Békés, F. 2002. Chain extension and termination as a function of cysteine content and the length of the central repetitive domain in storage proteins. J. Cereal Sci. 36:313–325.CrossRefGoogle Scholar
  155. Tamás, L., Shewry, P.R. 2006. Heterologous expression and protein engineering of wheat gluten proteins. J. Cereal Sci. 37:255–265Google Scholar
  156. Toufeili, I., Ismail, B., Shadarevian, S., Baalbaki, R., Khatkar, B.S., Bell, A.E., Schofield, J.D. 1999. The role of gluten proteins in the baking of Arabic bread. J. Cereal Sci. 30:255–265.CrossRefGoogle Scholar
  157. Tsilo, T.J., Ohm, J.B., Gary, A. Hareland, G.A., Anderson, J.A. 2010. Association of size-exclusion HPLC of endosperm proteins with dough mixing and breadmaking characteristics in a recombinant inbred population of hard red spring wheat. Cereal Chem. 87:104–111.CrossRefGoogle Scholar
  158. Turnball, K.M., Rahman, S. 2002. Endosperm texture in wheat. J.Cereal Sci. 36:327–337.CrossRefGoogle Scholar
  159. Uthayakumaran, S., Gras, P.W., Stoddard, F.L., Békés, F. 1999. Effect of varying protein content and glutenin-to-gliadin ratio on the functional properties of wheat dough. Cereal Chem. 76:389–394.CrossRefGoogle Scholar
  160. Uthayakumaran, S., Gras, P.W., Stoddard, F.L., Békés, F. 2000a. Optimising extension and baking conditions to study the effects of glutenin composition on the functional properties of wheat dough. Cereal Chem. 77:731–736.CrossRefGoogle Scholar
  161. Uthayakumaran, S., Stoddard, F.L., Gras, P.W., Békés, F. 2000b. Effects of incorporated glutenins on the functional properties of wheat dough. Cereal Chem. 77:737–743.CrossRefGoogle Scholar
  162. Uthayakumaran, S., Newberry, M., Keentok, M., Stoddard, F.L., Békés, F. 2000c. Basic rheology of bread dough with modified protein content and glutenin-to-gliadin ratio. Cereal Chem. 77:744–749.CrossRefGoogle Scholar
  163. Uthayakumaran, S., Beasley, H.L., Stoddard, F.L., Keentok, M., Phan-Thien, N., Tanner, R.I., Békés, F. 2002a. Synergistic and additive effects of three HMW-GS loci. I. Effects on wheat dough rheology. Cereal Chem. 79:294–300.CrossRefGoogle Scholar
  164. Uthayakumaran, S., Tömösközi, S., Tatham, A.S., Savage, A.W.J., Gianibelli, M.C., Stoddard, F.L., Békés, F. 2002b. Effects of gliadin fractions on functional properties of wheat dough depending on molecular size and hydrophobicity. Cereal Chem. 78:138–141.CrossRefGoogle Scholar
  165. Uthayakumaran, S., Batey, I.L., Wrigley, C.W. 2005. On-the-spot identification of grain variety and wheatqualitytype by Lab-on-a-chip capillary electrophoresis. J. Cereal Sci. 41:371–374.CrossRefGoogle Scholar
  166. Uthayakumaran, S., Listiohadi, Y., Baratta, M., Batey, I.L., Wrigley, C.W. 2006. Rapid identification and quantitation of high-molecular-weight glutenin subunits. J. Cereal Sci. 44:34–39.CrossRefGoogle Scholar
  167. Uthayakumaran, S., Wrigley, C.W. 2010. Wheat: Characteristics and quality requirements. In: Wrigley, C.W., Batey, I.L. (eds), Cereal Grains, Assessing and Managing Quality. CRC Press, Boca Raton, USA, pp. 59–111.CrossRefGoogle Scholar
  168. van Lill, D., Smith, M.F. 1997. A quality assurance strategy for wheat (Triticum aestivum L.) where growth environment predominates. S. Afric. J. Plant Soil 14:183–191.CrossRefGoogle Scholar
  169. Veraverbeke, W.S., Verbruggen, I.M., Delcour, J.A. 1999. Effects of increased HMW-GS content of flour on dough mixing behaviour and breadmaking. J. Agric. Food Chem. 46:4830–4835.CrossRefGoogle Scholar
  170. Wan, Y., Poole, R.L., Huttly, A.K., Toscano, R., Feeney, K., Welham, S., Gooding, M.K., Mills, C., Edwards, K.J., Shewry, P.R., Mitchell, R.A.C. 2008. Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics 9:121. doi: Scholar
  171. Wang, M. 2003. Effect of pentosans on gluten formation and properties. PhD Thesis, Univ. Wageningen, The Netherlands.Google Scholar
  172. Wangen, S. 2009. Healthier without wheat. A new understanding of wheat allergies, Celiac disease and non-celiac gluten intolerance. Innate Health Publ., Seattle, WA, USA.Google Scholar
  173. Wanjugi, H.W., Martin, J.M., Giroux, M.J. 2008. Influence of puroindolines A and B individually and in combination on wheat milling and bread traits. Cereal Chem. 84:540–547.CrossRefGoogle Scholar
  174. Weegels, P.L., Marseille, J.P., Bosveld, P., Hamer, R.J. 1994. Large scale separation of gliadins and their bread-making quality. J. Cereal Sci. 20:253–264.CrossRefGoogle Scholar
  175. Weegels, P.L., Pijpejkamp, A.M., Gravelland, A., Hamer, R.J., Schofield, J.D. 1996a. Depolymerisation and repolymerisation of wheat glutenin during dough processing. Relationsheips between glutenin macropolymer content and quality paqrameters. J. Cereal Sci. 23:103–111.Google Scholar
  176. Weegels, P.L., Hamer, R.J., Schofield, J.D. 1996b. Functional properties of wheat glutenin. J. Cereal Sci. 23:1–18.CrossRefGoogle Scholar
  177. Wooding, A.R., Kavale, S., MacRitchie, F., Stoddard, F.S. 1999. Link between mixing requirements and dough strength. Cereal Chem. 76:800–806.CrossRefGoogle Scholar
  178. Wieser, H., Mandersschield, R., Erbs, R., Weigel, H.J. 2008. Effects of elevated atmospheric CO2 concentrations on the quantitative protein composition of wheat grain. J. Agric. Food Chem. 56:6531–6535.CrossRefPubMedGoogle Scholar
  179. Williams, R.M.A., O’Brien, L., Eagles, H.A., Solah, V.A., Jayasena, A. 2008. The influences of genotype, environment, and genotype × environment interaction on wheat quality. Austr. J. Agric. Res. 59:95–111.CrossRefGoogle Scholar
  180. Wrigley, C.W., Békés, F., Bushuk, W. 2006. Chapter 1. Gluten: A balance of gliadin and glutenin. In: Wrigley, C.W., Békés, F., Bushuk, W. (eds), Gliadin and Glutenin. The Unique Balance of Wheat Quality. AACCI Press, St. Paul, MN, USA, pp. 3–33.CrossRefGoogle Scholar
  181. Wrigley, C.W., Asenstorfer, R., Batey, I.L., Cornish, G.B., Day, L., Mares, D., Mrva, K. 2009. The biochemical and molecular basis of wheat quality. Chapter 21. In: Carver, B. (ed.), Wheat: Science and Trade. Wiley-Blackwell, Ames, IA, USA, pp. 495–520.CrossRefGoogle Scholar
  182. Xu, J., Bietz, J.A., Carriere, C. 2007. Viscoelastic properties of wheat gliadin and glutenin suspensions. Food Chem. 101:1025–1030.CrossRefGoogle Scholar
  183. Zhang, Y., He, Z.H., Ye, G.Y., Zhang, A.M., Van Ginkel, M. 2004. Effect of environment and genotype on bread-making quality of spring-sown spring wheat cultivars in China. Euphytica 139:75–83.CrossRefGoogle Scholar
  184. Zhang, Y., Nagamine, T., He, Z.H., Ge, X.X., Yoshida, H., Pena, R.J. 2005. Variation in quality traits in common wheat as related to Chinese fresh white noodle quality. Euphytica 141:113–120.CrossRefGoogle Scholar
  185. Zhu, J., Khan, K. 1999. Characterization of monomeric and glutenin polymeric proteins of hard red spring wheats during grain development by multistacking SDS-PAGE and capillary zone electrophoresis. Cereal Chem. 76:261–269.CrossRefGoogle Scholar
  186. Zhu, J., Khan, K., Huang, S., O’Brien, L. 1999. Allelic variation at Glu-D1 locus for HMW GS: Quantification by multistacking SDS-PAGE of wheat grown under nitrogen fertilization. Cereal Chem. 76:915–919.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

Authors and Affiliations

  1. 1.FBFD Pty LtdBeecroftAustralia

Personalised recommendations