Advertisement

Cereal Research Communications

, Volume 39, Issue 3, pp 352–364 | Cite as

Distribution of Vernalization and Photoperiod Genes (Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3, Ppd-D1) in Turkish Bread Wheat Cultivars and Landraces

  • E. E. Andeden
  • F. E. Yediay
  • F. S. Baloch
  • S. Shaaf
  • B. Kilian
  • M. Nachit
  • H. ÖzkanEmail author
Physiology

Abstract

Vernalization and photoperiod response genes play a significant role in the geographical adaptation, agronomic performance and yield potential of crops. Therefore, understanding the distribution pattern and allelic diversity for vernalization and photoperiod genes are important in any wheat breeding program. In this study, we screened 63 bread wheat cultivars and 7 bread wheat landraces from Turkey for photoperiod (Ppd-D1) and vernalization genes (Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3) using diagnostic molecular markers. The photoperiod insensitive dominant allele, Ppd-D1a, was present in 60% of wheat cultivars and 42% of landraces, whereas, all other genotypes carried the photoperiod sensitive allele Ppd-D1b as recessive allele. Twenty-four cultivars and two landraces contained recessive alleles for all four VRN loci, whereas 39 wheat cultivars and 6 landraces contained one or more dominant VRN alleles. The highest percentage of Turkish wheat cultivars contained the dominant Vrn-B1 allele followed by Vrn-D1 and Vrn-A1. Information for vernalization and photoperiod alleles in Turkish germplasm will facilitate the planning and implementation of molecular markers in wheat breeding programs. This information will be helpful to develop elite wheat cultivars carrying suitable vernalization and photoperiod alleles with higher grain yield potential and better quality suitable for different production environments through marker assisted selection.

Keywords

vernalization photoperiod Ppd-D1 Vrn molecular markers bread wheat Triticum Turkey 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beales, J., Turner, A., Griffiths, S., Snape, J.W., Laurie, D.A. 2007. Apseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115:721–733.CrossRefGoogle Scholar
  2. Braun, H.J., Zincirci, N., Altay, F., Atli, A., Avci, M., Eser, V., Kambertay, M., Payne, T.S. 2001. Turkish wheat pool. In: Bonjean, A.P., Agnus, W.J. (eds), The World Wheat Book: A History of Wheat Breeding. Lavosier, Paris, France, pp. 851–879.Google Scholar
  3. Distelfeld, A., Li, C., Dubcovsky, J. 2009. Regulation of flowering in temperate cereals. Curr. Op. Pl. Biol. 12:1–7.CrossRefGoogle Scholar
  4. Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. hytochem. Bull. 19:11–15.Google Scholar
  5. Dubcovsky, J., Lijavetzky, D., Appendino, L., Tranquilli, G. 1998. Comparative AFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor. Appl. Genet. 97:968–975.CrossRefGoogle Scholar
  6. Dyck, J.A., Matus-Cadiz, M.A., Hucl, P., Talbert, L., Hunt, T., Dubuc, J.P., Nass, H., Clayton, G., Dobb, J., Quick, J. 2004. Agronomic performance of hard red spring wheat isolines sensitive and insensitive to photoperiod. Crop Sci. 44:1976–1981.CrossRefGoogle Scholar
  7. Eagles, H.A., Cane, K., Vallance, N. 2009. The flow of alleles of important photoperiod and vernalization genes through Australian wheat. Crop Pasture Sci. 60:646–657.CrossRefGoogle Scholar
  8. Foulkes, M.J., Sylvester-Bradley, R., Worland, A.J., Snape, J.W. 2004. Effects of a photoperiod-response gene Ppd-D1 on yield potential and drought resistance in UK winter wheat. Euphytica 135:63–73.CrossRefGoogle Scholar
  9. Fu, D., Szücs, P., Yan, L., Helguera, M., Skinner, J.S., Von Zitzewitz, J., Hayes, P.M., Dubcovsky, J. 2005. Large deletion within the first in Vrn-1 are associated with spring growth habit in barley and wheat. Mol. Gen. enet. 273:54–65.Google Scholar
  10. Goncharov, N.P. 2003. Genetics of growth habit (spring vs. winter) in common wheat. Conformation of existence of dominant gene Vrn4. Theor. Appl. Genet. 107:768–772.CrossRefGoogle Scholar
  11. Iqbal, M., Navabi, A., Yang, R., Salmon, D.F., Spaner, D. 2007. Molecular characterization of vernalization response gene in Canadian spring wheat. Genome 50:511–516.CrossRefGoogle Scholar
  12. Iwaki, K., Haruna, S., Niwa, T., Kato, K. 2001. Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotypes. Plant Breed. 120:107–114.CrossRefGoogle Scholar
  13. Kilian, B., Özkan, H., Pozzi, C., Salamini, F. 2009. Domestication of the Triticeae in the fertile crescent. In: Feuillet, C., Muehlbauer, G.J. (eds), Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models 7. Springer Science+Business Media, LLC, New York, USA, pp. 81–119.CrossRefGoogle Scholar
  14. Ozkan, H., Brandolini, A., Pozzi, C., Effgen, S., Wunder, J., Salamini, F. 2005. A reconsideration of the domestication geography of tetraploid wheat. Theor. Appl. Genet. 110:1052–1060.CrossRefGoogle Scholar
  15. Santra, D.K., Santra, M., Allan, R.E., Campbell, K.G., Kidwell, K.K. 2009. Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1 and Vrn-D1 in spring wheat germplasm from Pacific Northwest region of USA. Plant Breed. 128:576–584.CrossRefGoogle Scholar
  16. Scarth, R., Law, C.N. 1984. The control of day length response in wheat by the group 2 chromosomes. Z. flanzenzücht. 92:140–150.Google Scholar
  17. Stelmakh, A.F. 1993. Genetic effect of Vrn gene on heading date and agronomic traits in bread wheat. Euphytica 100:359–369.CrossRefGoogle Scholar
  18. Worland, A.J., Börner, A., Korzun, V., Li, M.W., Petrovic S., Sayers, E.J. 1998. The influence of photoperiod genes on the adaptability of European winter wheat. Euphytica 100:385–394.CrossRefGoogle Scholar
  19. Yan, L., Helguera, M., Kato, K., Fukuyama, S., Sherman, J., Dubcovsky, J. 2004. Allelic variations at VRN-1 promoter in polyploidy wheat. Theor. Appl. Genet. 109:1677–1686.CrossRefGoogle Scholar
  20. Yan, L., Loukojanov, A., Tranquillo, G., Helguera, M., Fahima, T., Dubcovsky, J. 2003. Positional cloning of vernalization gene VRN1. Proc. Natl. Acad. Sci. USA. 100:6263–6268.CrossRefGoogle Scholar
  21. Yang, F.P., Zhang, X.K., Xia, X.C., Laurie, D.A., Yang, W.X., He, Z.H. 2009. Distribution of photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars. Euphytica 165:445–452.CrossRefGoogle Scholar
  22. Yediay, F.E., Baloch, F.S., Kilian, B., Özkan, H. 2010. Testing of rye specific markers located on 1RS chromosome and distribution of 1AL.RS and 1BL.RS. translocations in Turkish wheat (Triticum aestivum L., Triticum durum Desf.) varieties and landraces. Genet. Resour. Crop. Evol. 57:119–129.CrossRefGoogle Scholar
  23. Yücel, C., Baloch, F.S., Özkan, H. 2009. Genetic analysis of some physical properties of bread wheat grain (Triticum aestivum L.). Turkish J. of Agriculture and Forestry 33:525–535.Google Scholar
  24. Zhang, X.K., Xia, X.C., Xiao, Y.G., Dubcovsky, J., He, Z.H. 2008. Allelic variation at vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in Chinese common wheat cultivars and their association with growth habit. Crop Sci. 48:458–470.CrossRefGoogle Scholar
  25. Zhang, Y., Liu, W.C., Li, J., Wei, H.T., Hu, X.R., Li, Y.J., Lu, B.R., Yang, W.Y. 2010. Distribution and selective effects of Vrn-A1, Vrn-B1, and Vrn-D1 genes in derivative varieties from four cornerstone breeding parents of wheat in China. Agricultural Sci. in China 9:1389–1399.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • E. E. Andeden
    • 1
  • F. E. Yediay
    • 1
  • F. S. Baloch
    • 2
  • S. Shaaf
    • 3
  • B. Kilian
    • 4
  • M. Nachit
    • 5
  • H. Özkan
    • 1
    • 2
    Email author
  1. 1.Department of Biotechnology, Institute of Basic and Applied SciencesUniversity of ÇukurovaAdanaTurkey
  2. 2.Department of Field Crops, Faculty of AgricultureUniversity of ÇukurovaAdanaTurkey
  3. 3.Department of Agronomy and Plant BreedingUniversity of TehranTehranIran
  4. 4.Genebank/ Genome DiversityLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  5. 5.ICARDAAleppoSyria

Personalised recommendations