Cereal Research Communications

, Volume 39, Issue 3, pp 325–333 | Cite as

Expression of Barley Leaf Cysteine Proteinase Inhibitor as an Active Fusion Protein in Escherichia coli Cells

  • A. GholizadehEmail author
  • B. Baghbankohnehrouz


Nowadays, identification of the novel physio-biological and therapeutic functions of plant cysteine proteinase inhibitors “plant cystatins / phytocystatins” are the great of interests for molecular biologists. Whether for biochemical, structural or functional studies, their successful expression along with an easy purification method is required. To date, fusion tags are the best available tools that meet all those requirements. We report here the cloning and simple functional expression and purification of a barley putative cystatin in Escherichia coli cells. For the first time, a part of barley coding sequence containing a predicted active cystatin was amplified by polymerase chain reaction and expressed as maltose binding fusion protein in TB1 strain of E. coli cells using pMALc2X over-expression vector system without affecting the bacterial growth. The expressed product was purified by single step affinity chromatography from the soluble fraction of induced culture at a yield of about 37 mg/ liter of bacterial cell culture. The purified fused protein could efficiently inhibit papain activity in vitro without the cleavage of the fusion partner.


barley cystatin proteinase inhibitor fusion protein expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, M., Abe, K., Kuroda, M., Arai, S. 1992. Corn kernel cysteine protease inhibitor as a novel cystatin superfamily member of plant cystatins. Eur. J. Biochem. 209:933–937.CrossRefGoogle Scholar
  2. Annadana, S., Schipper, B., Beekwilder, J., Outchkourov, N., Udayakumar, M., Jongsma, M.A. 2003. Cloning, functional expression in Pichia pastoris, and purification of potato cystatin and multicystatin. J. Biosci. Bioeng. 95:118–123.CrossRefGoogle Scholar
  3. Arai, S., Matsumoto, I., Emori, Y., Abe, K. 2002. Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J. Agric. Food Chem. 50:6612–6617.CrossRefGoogle Scholar
  4. Barrett, A.J., Fritz, H., Grubb, A. 1986. Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem. J. 236:312–318.CrossRefGoogle Scholar
  5. Bateman, A., Birney, E., Cerruti, L., Burbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K-L., Marsahall, M., Sonnhammer, E.L. 2002. The Pfam protein families database. Nucl. Acids Res. 30:276–280.CrossRefGoogle Scholar
  6. Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P., Delledonne, M. 2003. AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270:2593–2604.CrossRefGoogle Scholar
  7. Birnboirm, H.C., Doly, J.A. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 7:1513–1523.CrossRefGoogle Scholar
  8. Botella, M.A., Xu, Y., Prabha, T.N., Zhao, Y., Narasimhan, M.L., Wilson, K.A., Nielsen, S.S., Bressan, R.A., Hasegawa, P.M. 1996. Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol. 112:1201–1210.CrossRefGoogle Scholar
  9. Campos, R.G., Acosta, J.A.T., Arias, L.J.S., Lim, M.A.G. 1999. The use of cysteine proteinase inhibitor to engineer resistance against potyviroses in transgenic tobacco plants. Nat. Biotechnol. 17:1223–1226.CrossRefGoogle Scholar
  10. Cipriani, G., Fuentes, S., Bello, V., Salazar, L.F., Ghislain, M., Zhang, D.P. 2000. Transgene expression of rice cysteine proteinase inhibitors for the development of resistance against sweetpotato feathery mottle virus. In: CIP (Centro Internacional de la Papa) Program Report 1999–2000. Lima, Peru, pp. 267–271.Google Scholar
  11. Corre-Menguy, F., Cejudo, F.J., Mazubert, C., Vidal, J., Lelandais-Brière, C., Torres, G., Rode, A., Hartmann, C. 2002. Characterization of the expression of a wheat cystatin gene during caryopsis development. Plant Mol. Biol. 50:687–698.CrossRefGoogle Scholar
  12. Diop, N.N., Kidric, M., Repellin, A., Gareil, M., d’Arcy-Lameta, A., Pham Thi, A.T., Zuily-Fodil, Y. 2004. A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett. 577:545–550.CrossRefGoogle Scholar
  13. Duplay, P., Bedouelle, H., Fowler, A., Zabin, I., Saurin, W., Hofnung, M. 1984. Sequences of the malE gene and of its product. The Maltose-Binding Protein of Escherichia coli K12. J. Biol. Chem. 259:10606–10613.PubMedGoogle Scholar
  14. Gaddour, K., Vicente-Carbajosa, J., Lara, P., Isabel-Lamoneda, I., Diaz, I., Carbonero, P. 2001. A constitutive cystatin-encoding gene from barley (Icy) responds differentially to abiotic stimuli. Plant Mol. Biol. 45:599–608.CrossRefGoogle Scholar
  15. Gianotti, A., Rios, M.W., Costa, A.S., Nogaroto, V., Carmona, A.K., Oliva, M.L.V., Andrade, S.S., Silva, F.H. 2006. Recombinant expression, purification and functional analysis of two novel cystatins from sugarcane (Sacchaum officinarum). Prot. Exp. Puri. 47:483–489.CrossRefGoogle Scholar
  16. Kellerman, O.K., Ferenci, T. 1982. Maltose-binding protein from E. coli. Methods Enzymol. 90:459–463.CrossRefGoogle Scholar
  17. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.CrossRefGoogle Scholar
  18. Martinez, M., Abraham, Z., Carbonero, P., Diaz, I. 2005. Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley. Mol. Gen. Genom. 273:423–432.CrossRefGoogle Scholar
  19. Martinez, M., Rubio-Somoza, I., Fuentes, R., Lara, P., Carbonero, P., Diaz, I. 2005. The barley cystatin gene (Icy) is regulated by DOF transcription factors in aleurone cells upon germination. J. Exp. Bot. 56:547–556.CrossRefGoogle Scholar
  20. Massonneau, A., Condamine, P., Wisniewski, J.-P., Zivy, M., Rogowsky, P.M. 2005. Maize cystatins respond to developmental cues, cold stress and drought. Biochim. Biophys. Acta 1729:186–199.CrossRefGoogle Scholar
  21. Otto, H.H., Schirmeister, T. 1997. Cysteine proteases and their inhibitors. Chem. Rev. 97:133–171.CrossRefGoogle Scholar
  22. Rawling, N.D., Barrett, A.J. 1990. Evolution of proteins of the cystatin superfamily. J. Mol. Evol. 30:60–71.CrossRefGoogle Scholar
  23. Rivard, D., Girard, C., Anguenot, R., Vézina, L.P., Trépanier S., Michaud, D. 2007. Ms CYS1, a developmentally-regulated cystatin from alfalfa. Plant Physiol. Biochem. 45:508–514.CrossRefGoogle Scholar
  24. Sculachev, V. 2004. A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata L. Walp.) leaves. FEBS Lett. 577:545–550.CrossRefGoogle Scholar
  25. Solomon, M., Belenghi, B., Delledonne, M., Menachem, E., Levine, A. 1999. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11:431–443.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Research Institute for Fundamental Sciences (RIFS)University of TabrizTabrizIran
  2. 2.Department of Plant Breeding and BiotechnologyUniversity of TabrizTabrizIran

Personalised recommendations