Advertisement

Cereal Research Communications

, Volume 39, Issue 2, pp 225–236 | Cite as

A retrospective analysis of HMW and LMW glutenin alleles of cultivars bred in Martonvásár, Hungary

  • I. Baracskai
  • G. Balázs
  • L. Liu
  • W. Ma
  • M. Oszvald
  • M. Newberry
  • S. Tömösközi
  • L. Láng
  • Z. Bedő
  • F. BékésEmail author
Quality and Utilization
  • 1 Downloads

Abstract

The glutenin allele gene-pool, the distribution of the individual alleles on the 6 loci coding for glutenin subunits and their combinations were determined in a sample population containing 107 cultivars bred and grown in Martonvásár, Hungary at the Agricultural Research Institute of the Hungarian Academy of Sciences. The database is based on the results of three independent analytical procedures carried out using the traditional SDS-PAGE based allele identification, the state-of-art MALDI-TOF technology and the high throughput capillary electrophoresis based on the lab-on-a-chip technique. The usefulness of integrating the information on both HMW GS and LMW GS allelic composition for future genetic and technological improvement is discussed.

Keywords

Gluloci Glu-3 glutenin MALDI-TOF 

Abbreviations

HMWGS

high molecular weight glutenin subunits

LMWGS

low molecular weight glutenin subunits

SDS-PAGE

sodium dodecyl sulphate polyacrylamide gel electrophoresis

MALDI-TOF-MS

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

LOC-CE

lab-on-a-chip capillary electrophoresis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appels, R., Gustafson, J.P., O’Brien, L. 2001. Wheat breeding in the new century: Applying molecular genetic analysis of key quality and agronomic traits. Aust. J. Agric. Res. 52:1043–1417.CrossRefGoogle Scholar
  2. Balázs, G., Baracskai, I., Nádosi, M., Harasztos, A., Békés, F., Tömösközi, S. 2011. Lab-on-a-chip technology in cereal science: Analytical properties and possible application areas. Acta Alimentaria (in press).Google Scholar
  3. Bedõ, Z., Vida, Gy., Láng, L., Karsai, I. 1998. Breeding for breadmaking quality using old Hungarian wheat varieties. Euphytica 100:179–182.CrossRefGoogle Scholar
  4. Bedõ, Z., Vida, Gy., Láng, L., Juhász, A., Karsai, I. 1999. Breeding a wheat variety with different lines for technological quality and HMW glutenin composition. J. Genet. Breed. 53:57–62.Google Scholar
  5. Békés, F., Kemény, S., Morell, M. 2006a. An integrated approach to predicting end-product quality of wheat. Eur. J. Agron. 25:155–162.CrossRefGoogle Scholar
  6. Békés, F., Cavanagh, C.R., Martinov, S., Bushuk, W., Wrigley, C.W. 2006b. The Gluten Composition of Wheat Varieties and Genotypes. Part III. Composition table for HMW-GS. http://www.aaccnet.org/grainbin/pdfs/II_HMW_Subunits.pdf
  7. Békés, F., Cavanagh, C.R., Martinov, S., Bushuk, W., Wrigley, C.W. 2006c. The Gluten Composition of Wheat Varieties and Genotypes. Part II. Composition table for LMW-GS. http://www.aaccnet.org/grainbin/pdfs/III_LMWSubunits.pdf
  8. Branlard, G., Dardevet, M., Amiour, M., Igrejas, G. 2003. Allelic diversity of HMW and LMW glutenin subunits and omegagliadins in French bread wheat (Triticum aestivum L.). Genet. Resour. Crop Evol. 50:669–679.CrossRefGoogle Scholar
  9. Cornish, G.B., Békés, F., Eagles, H.A., Payne, P.I. 2006. Prediction of dough properties for bread wheats (Chapter 8). In: Wrigley, C.W., Békés, F., Bushuk, W. (eds), Gliadin and Glutenin. The Unique Balance of Wheat Quality. AACCI Press, St Paul, MN, USA, pp. 243–280.CrossRefGoogle Scholar
  10. Eagles, H.A., Hollamby, G.J., Gororo, N.N., Eastwood, R.F. 2002. Estimation and utilisation of glutenin gene effects from the analysis of unbalanced data from wheat breeding programs. Aust. J. Agric. Res. 53:1047–1057.CrossRefGoogle Scholar
  11. Gupta, R.B., Shepherd, K.W. 1990. Two-step one-dimensional SDS-PAGE analysis for LMW-GS. 2. Genetic control of the subunits in species related to wheat. Theor. Appl. Genet. 80:65–74.CrossRefGoogle Scholar
  12. Gupta, R.B., Békés, F., Wrigley, C.W. 1991. Prediction of physical dough properties from glutenin subunit composition in bread wheats: correlation studies. Cereal Chem. 68:328.Google Scholar
  13. Jackson, E.A., Morel, M.H., Sontag-Sthorm, T., Branlard, G., Metaskovsky, E.V., Redaelli, R. 1996. Characterisation of HMW gliadin and LMW glutenin subunits of wheat endosperm by 2D electrphoresis and the chromosomal localisation of their controlling genes. Theor. Appl. Genet. 66:29–37.CrossRefGoogle Scholar
  14. Juhász, A., Larroque, O., Tamás, L., Hsam, S.K.L., Zeller, F., Békés, F., Bedõ, Z. 2003. Bánkúti 1201 - an old Hungarian wheat variety with special storage protein composition. Theor. Appl. Genet. 107:697–704.CrossRefGoogle Scholar
  15. Kammholz, S.J., Campbell, A.W., Sutherland, M.W., Hollamby, G.J., Martin, P.J., Eastwood, R.F., Barclay, I., Wilson, R.E., Brennan, P.S., Sheppard, J.A. 2001. Establishment and characterisation of wheat genetic mapping populations. Aust. J. Agric. Res. 52:1079–1088.CrossRefGoogle Scholar
  16. Kussmann, M.E., Nordhoff, H., Rahbek-Nielsen, S., Haebel, M., Rossel-Larsen, L., Jakobsen, J., Gobom, E., Mirgorodskaya, A., Kroll-Kristensen, L., Roepstorff, P. 1997. MALDI-MS sample preparation techniques designed for various peptide and protein analytes. J. Mass Spectrom. 32:593–601.CrossRefGoogle Scholar
  17. Liu, L., Wang, A., Appels, R., Ma, J., Xia, X., Lan, P., He, Z., Bekes, F., Yan, Y., Ma, W. 2009. A MALDI-TOF based analysis of high molecular weight glutenin subunits for wheat breeding. J. Cereal Sci. 50:295–301.CrossRefGoogle Scholar
  18. Ma, M., Wang, A., Liu, L., Békés, F., Newberry, M., Gao, L., Ma, J., Islam, S., Yan, Z., He, Y., Xia, X., Appels, R. 2011. High resolution identification of high and low molecular weight glutenin alleles by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in common wheat (Triticum aestivum L.). In: Branlard, G. (ed.), Proc. 10th International Gluten Workshop, Clermont-Ferrand, France, September 7–9, 2009, pp. 147–151.Google Scholar
  19. Mann, G., Diffey, S., Rampling, L., Nath, A., Kutty, I., Leyne, E., Azanza, F., Cullis, B., Smith, A., Morell, M. 2007. A QTL approach to identifying genes controlling protein, processing and baking quality attributes in wheat. In: Lookhart, G.L., Ng, P.K.W. (eds), Gluten Proteins 2006. AACCI Press, St Paul, USA, pp. 73–77.Google Scholar
  20. Marchylo, B.A., Kruger, J.E., Hatcher, D.W. 1989. Quantitative reverse-phase high performance liquid chromatographic analysis of wheat storage proteins as a potential quality prediction tool. J. Cereal Sci. 9:113–130.CrossRefGoogle Scholar
  21. Melas, V., Molel, M.H., Autran, J.C., Feillet, P. 1994. Simple and rapid method for purifying low molecular weight subunits of glutenin from wheat. Cereal Chem. 71:234–237.Google Scholar
  22. Millar, S.J., Snape, J., Ward, J., Shewry, P.R., Belton, P., Boniface, K., Summers, R. 2008. Investigating wheat functionality through breeding and end use (FQS 23) HGCA, Project Report No. 429. Campden and Chorleywood Food Research Association, Chipping Campden, U.K.Google Scholar
  23. Ng, P.K.W., Pogna, N.E., Mellini, F., Bushuk, W. 1989. Glu-1 allele compositions of the wheat cultivars registered in Canada. J. Genet. Breed. 43:53–59.Google Scholar
  24. Payne, P.I., Lawrence, G.J. 1983. Catalogue of alleles for the complex loci Glu-A1, Glu-B1 and Glu-D1 which coded for HMW-GS in hexaploid wheat. Cereal Res. Comm. 11:29–35.Google Scholar
  25. Payne, P.I., Nightingale, M.A., Krattiger, A.F., Holt, L.M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varietes. J. Sci. Food Agric. 40:51–56.CrossRefGoogle Scholar
  26. Pogna, N.E., Mellini, F., Beretta, A., Deruffo, A. 1989. The high-molecular-weight glutenin subunits of common wheat cultivars grown in Italy. J. Genet. Breed. 43:17–24.Google Scholar
  27. Rakszegi, M., Kárpáti, M., Lásztity, R., Bedõ, Z. 1999. Study of the LMW glutenin subunits of some old Hungarian wheat cultivars. Cereal Res. Commun. 27:293–299.Google Scholar
  28. Rakszegi, M., Scholz, É., Kárpáti, M., Ganzler, K., Lásztity, R., Bedõ, Z. 2000. Study of the LMW glutenin composition of some old Hungarian wheat cultivars using capillary electrophoresis. Cereal Res. Commun. 28:417–424.Google Scholar
  29. Singh, N.K., Shepherd, K.W., Cornish, G.B. 1991. Asimplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 14:203–208.CrossRefGoogle Scholar
  30. Uthayakumaran, S., Listiohadi, Y., Baratta, M., Batey, I.L., Wrigley, C.W. 2006. Rapid identification and quantitation of high-molecular-weight glutenin subunits. J. Cereal Sci. 47:1–6.Google Scholar
  31. Vawser, M.J., Cornish, G.B. 2004. Over-expression of HMWglutenin subunit Glu-B1 7* in hexaploid wheat varieties (Triticum aestivum). Aust. J. Agric. Res. 55:577–588.CrossRefGoogle Scholar
  32. Wrigley, C.W., Békés, F., Bushuk, W. 2006. Gluten: A balance of gliadin and glutenin. In: Wrigley, C.W., Békés, F., Bushuk, W. (eds), Gliadin and Glutenin. The Unique Balance of Wheat Quality. AACCI Press, St Paul, MN, USA, pp. 3–33.CrossRefGoogle Scholar
  33. Zhen, Z., Mares, D. 1992. Asimple extraction and one-step SDS-PAGE for separating HMW and LMW glutenin subunits of wheat and high molecular weight proteins of rye. J. Cereal Sci. 15:63–78.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • I. Baracskai
    • 1
  • G. Balázs
    • 2
  • L. Liu
    • 3
  • W. Ma
    • 3
  • M. Oszvald
    • 3
    • 4
  • M. Newberry
    • 5
  • S. Tömösközi
    • 2
  • L. Láng
    • 1
  • Z. Bedő
    • 1
  • F. Békés
    • 5
    Email author
  1. 1.Agricultural Research Institute of the HASMartonvásárHungary
  2. 2.Department of Applied Biotechnology and Food ScienceBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Murdoch UniversityPerthAustralia
  4. 4.Department of Plant Physiology and Molecular Plant BiologyEötvös Loránd UniversityBudapestHungary
  5. 5.CSIRO Plant IndustryNorth RydeAustralia

Personalised recommendations