Cereal Research Communications

, Volume 39, Issue 1, pp 160–167 | Cite as

Role of genotypes and agrotechnical elements in cereal crop models

Open Access


The interactions of ecological conditions, genotypes and agrotechnical elements determine the yield quantity, quality and stability in cereal (wheat, maize) production. The applied input-level can modify the adaptive capacity of crop models to ecological conditions. The effects of agrotechnical elements (crop rotation, fertilization, irrigation, crop protection, plant density) were studied in the long-term experiment on chernozem soil. Our scientific results proved that the high yields and good yield-stability were obtained in the input-intensive crop models, so these models had better adaptive capacity, high yield and resilience. Maize had lower ecological adaptive ability than winter wheat. The optimalization of agrotechnical elements reduces the harmful climatic effects so we can increase the yield and yield stability of cereals agro-ecosystems. The yields of wheat varied between 2 and 7 t ha−1 in extensive and 8 and 10 t ha−1 in intensive crop models and the yields of maize ranged between 2 and 11 t ha−1 and 10 and 15 t ha−1, respectively.


wheat maize crop model yield yield-stability 


  1. Balogh, Á., Pepó, P. 2008. Cropyear effects on the fertilizer responses of winter wheat (Triticum aestivum L.) genotypes. Cereal Res. Commun. 36:732–734.Google Scholar
  2. Berzsenyi, Z. 1993. Növényanalízis a kukoricatermesztési kutatásokban (Crop analyses in the research of maize production). DSc thesis. Martonvásár, Hungary (in Hungarian).Google Scholar
  3. Birkás, M., Dexter, A.R., Kalmár, T., Bottlik, L. 2006. Soil quality — soil condition — production stability. Cereal Res. Commun. 34:135–138.CrossRefGoogle Scholar
  4. Holling, C.S. 1973. Resilience and stability of ecological systems. Ann. Rev. of Ecol. and Syst. 4:2–23.CrossRefGoogle Scholar
  5. Jolánkai, M.: 1982. Őszi bÚzafajták tápanyagés vízhasznosítása (Water- and nutrient utilization of winter wheat varieties). Ph.D. thesis (in Hungarian).Google Scholar
  6. Olsen, J. E., Bindi, M. 2002. Consequences of climate change for European agricultural productivity, land use and policy. European J. of Agron. 16:239–262.CrossRefGoogle Scholar
  7. Pepó, P. 2004. Őszi bÚza tápanyagellátása a HajdÚságban (Nutrient management of winter wheat). DSc thesis (in Hungarian).Google Scholar
  8. Pepó, P. 2009. Effects of water supply as an abiotic stress on the yields and agronomic traits of winter wheat (Triticum aestivum L.) on chernozem soil. Cereal Res. Commun. 37:29–32.Google Scholar
  9. Perrings, Ch. 2006. Resilience and sustainable development. Environment and Development Economics 11:417–427.CrossRefGoogle Scholar
  10. Pimm, S.L. 1984. The complexity and stability of ecosystems. Nature 307:322–326.CrossRefGoogle Scholar
  11. Ruzsányi, L. 1990. A növények elővetemény-hatásának értékelése vízháztartási szempontból (Evaluation of the forecrop effect from the point of view of water management). Növénytermelés 40:71–77 (in Hungarian with English summary).Google Scholar
  12. Vad, A., Dóka, L. 2009. Cropyear as abiotic stress effect on the yields of maize (Zea mays L.) in different crop rotation. Cereal Res. Commun. 37:253–256.Google Scholar
  13. Várallyay, Gy. 2007. A globális klímaváltozás (Global climatic changes): In: Láng, I., Csete, L., Jolánkai, M. (eds), A VAHAVA Jelentés (VAHAVA report). Agrokémia és Talajtan 56:199–202 (in Hungarian).CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Crop Sciences, Faculty of AgricultureUniversity of DebrecenDebrecenHungary

Personalised recommendations