Cereal Research Communications

, Volume 38, Issue 4, pp 489–496 | Cite as

Molecular cloning and phylogenetic analysis of fructose-bisphosphate aldolase (cytoplasmic isozyme) in wheat, barley and rye

  • J. R. Wang
  • Z. H. Yan
  • Y. L. Zheng
  • W. G. Cao
  • Y. M. WeiEmail author


Fructose-bisphosphate aldolase (FBA, EC catalyzes an aldol cleavage of fructose-1, 6-bisphosphate to dihydroxyacetone-phosphate and glyceraldehyde 3-phosphate and a reversible aldol condensation. Three candidate genes with 1077bp coding for fructose-bisphosphate aldolase were cloned and sequenced in wheat, barley and rye. These genes could encode 358 amino acid residues. Sequence analysis indicated that wheat, barley and rye FBA genes were conserved with high identity (94.13%), while maize sequence had a 9bp deletion near the 3’ terminal. According to the alignment of 75 amino acid sequences, conserved domains of the FBAs were detected. These conserved domains might be the important functional sites of the FBAs. The cytoplasmic FBAs of wheat, barley and rye were clustered together, and the cluster was close to maize and rice FBAs. Nine peptides of the FBAs and the last amino acid Tyr (necessary for preference for fructose 1,6-bisphosphate over fructose 1-phosphate) were most conserved in plants, animals and algae. Current findings suggested that the FBAs could be divided into three main subgroups: plant cytoplasmic FBA, plant chloroplastic FBA and animal FBA. These results also indicated that the active and binding sites of FBAs had rare variations during the long-term evolution.


fructose-bisphosphate aldolase cereal molecular characterization phylogenetic analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandrov, N.N., Brover, V.V., Freidin, S., Troukhan, M.E., Tatarinova, T.V., Zhang, H., Swaller, T.J., Lu, Y.P., Bouck, J., Flavell, R.B., Feldmann, K.A. 2009. Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol. Biol. 69:179–194.CrossRefGoogle Scholar
  2. Choi, K.H., Shi, J., Hopkins, C.E., Tolan, D.R., Allen, K.N. 2001. Snapshots of catalysis: The structure of fructose-1,6-(bis) phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate. Biochemistry 40:13868–13875.CrossRefGoogle Scholar
  3. Dennis, E.S., Gerlach, W.L., Walker, J.C., Lavin, M., Peacock, W.J. 1988. Anaerobically regulated aldolase gene of maize. A chimaeric origin? J. Mol. Biol. 202:759–767.CrossRefGoogle Scholar
  4. Gamblin, S.J., Cooper, B., Millar, J.R., Davies, G.J., Littlechild, J.A., Watson, H.C. 1990. The crystal structure of human muscle aldolase at 3.0Å resolution. FEBS Lett. 262:282–286.CrossRefGoogle Scholar
  5. Gross, W., Lenze, D., Nowitzki, U., Weiske, J., Schnarrenberger, C. 1999. Characterization, cloning, and evolutionary history of the chloroplast and cytosolic class I aldolases of the red alga Galdieria sulphuraria. Gene 230:7–14.CrossRefGoogle Scholar
  6. Hidaka, S., Kadowaki, K., Tsutsumi, K., Ishikawa, K. 1990. Nucleotide sequence of the rice cytoplasmic aldolase cDNA. Nucleic Acids. Res. 18:3991.CrossRefGoogle Scholar
  7. Kelley, P.M., Tolan, D.R. 1986. The complete amino acid sequence for the anaerobically induced aldolase from maize derived from cDNA clones. Plant Physiol. 82:1076–1080.CrossRefGoogle Scholar
  8. Kumar, S., Tamura, K., Nei, M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5:150–163.CrossRefGoogle Scholar
  9. Lebherz, H.G., Leadbetter, M.M., Bradshaw, R.A. 1984. Isolation and characterization of the cytosolic and chloroplasts forms of spinach leaf fructose diphosphate aldolase. J. Biol. Chem. 259:1011–1017.PubMedGoogle Scholar
  10. Lorentzen, E., Siebers, B., Hensel, R., Pohl, E., 2004. Structure, function and evolution of the archaeal class I fructose-1,6-bisphosphate aldolase. Biochem. Soc. Trans. 32:259–263.CrossRefGoogle Scholar
  11. Lorentzen, E., Pohl, E., Zwart, P., Stark, A., Russell, R.B., Knura, T., Hensel, R., Siebers, B. 2003. Crystal structure of an archaeal Class I aldolase and the evolution of (βα)8 barrel proteins. J. Biol. Chem. 278:47253–47260.CrossRefGoogle Scholar
  12. Martin, W., Mustafa, A.Z., Henzel, K., Schnarrenberger, C. 1996. Higher-plant chloroplast and cytosolic fructose-l,6-bisphosphatase isoenzymes: Origins via duplication rather than prokaryote-eukaryote divergence. Plant Mol. Biol. 32:485–491.CrossRefGoogle Scholar
  13. Patron, N.J., Rogers, M.B., Keeling, P.J. 2004. Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryotic Cell 3:1169–1175.CrossRefGoogle Scholar
  14. Plaxton, W.C. 1996. The organization and regulation of plant glycolysis. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 47:185–214.CrossRefGoogle Scholar
  15. Rogers, M.B., Patron, N.J., Keeling, P.J. 2007. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria. BMC Biology 5:26.CrossRefGoogle Scholar
  16. Rogers, M.B., Keeling, P.J. 2003. Lateral gene transfer and recompartmentalization of Calvin cycle enzymes in plants and algae. J. Mol. Evol. 58:367–375.CrossRefGoogle Scholar
  17. Rutter, W.J. 1964. Evolution of aldolase. Fed. Proc. 23:1248–1257.PubMedGoogle Scholar
  18. Sanchez, L., Horner, D., Moore, D., Henze, K., Embley, T., Müller, M. 2002. Fructose-1,6-bisphosphate aldolases in amitochondriate protists constitute a single protein subfamily with eubacterial relationships. Gene 295:51–59.CrossRefGoogle Scholar
  19. Schaeffer, G.W., Sharpe, F.T., Sicher, R.C. 1997. Fructose 1,6-bisphosphate aldolase activity in leaves of a rice mutant selected for enhanced lysine. Phytochemistry 46:1335–1338.CrossRefGoogle Scholar
  20. Schnarrenberger, C., Pelzer-Reith, B., Yatsuki, H., Freund, S., Jacobshagen, S., Hori, K. 1994. Expression and sequence of the only detectable aldolase in Chlamydomonas reinhardtii. Arch. Biochern. Biophys. 313:173–178.CrossRefGoogle Scholar
  21. Thompson, J.D., Higgins, D.G., Gibson, T.J. 1994. Clustal W: Improving the sensitivity of progressive multiple sequence aligment through sequence weighting matrix choice. Nucleic. Acids. Res. 22:4673–4680.CrossRefGoogle Scholar
  22. Tsutsumi, K., Kagaya, Y., Hidaka, S., Suzuki, J., Tokairin, Y., Hirai, T., Hu, D., Ishikawa, K., Ejiri, S. 1994. Structural analysis of the chloroplastic and cytoplasmic aldolase-encoding genes implicated the occurrence of multiple loci in rice. Gene 141:215–220.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

Authors and Affiliations

  • J. R. Wang
    • 1
  • Z. H. Yan
    • 1
  • Y. L. Zheng
    • 1
  • W. G. Cao
    • 2
  • Y. M. Wei
    • 1
    Email author
  1. 1.Triticeae Research InstituteSichuan Agricultural UniversityYaan, SichuanChina
  2. 2.Agriculture & Agri-Food Canada, Eastern Cereal and Oilseed Research CentreOttawaCanada

Personalised recommendations