Advertisement

Cereal Research Communications

, Volume 38, Issue 4, pp 449–458 | Cite as

Chromosome number variations in newly synthesized hexaploid wheats spontaneously derived from self-fertilization of Triticum carthlicum nevski / aegilops tauschii coss. F1 hybrids

  • K. NiwaEmail author
  • H. Aihara
  • A. Yamada
  • T. Motohashi
Genetics

Abstract

This study was aimed at elucidating numerical variation of chromosomes in newly synthesized hexaploid wheats. We carried out artificial crosses between Triticum carthlicum (2n = 4x = 28, AABB) as female parent and Aegilops tauschii (2n = 2x = 14, DD) as male parent, obtaining intergeneric F1 hybrids (2n = 3x = 21, ABD). After self-fertilization of the F1 hybrids having 21 somatic chromosomes, we obtained F2 seeds (synthetic hexaploid wheats), and determined their somatic chromosome number. Of the expected 150 cross combinations of F1 hybrids between six strains of T. carthlicum and 25 strains of Ae. tauschii, 67 cross combinations of synthetic hexaploid wheats were obtained. Compared to strains of Ae. tauschii ssp. tauschii, those of Ae. tauschii ssp. strangulata produced synthetic hexaploid wheats showing euploidy with a high frequency. In addition, among strains of Ae. tauchii ssp. tauschii, those from Iran contributed more to the production of synthetic hexaploid wheats showing euploidy than those from Afghanistan, Pakistan, Turkey or the former USSR.

Keywords

Aegilops tauschii aneuploid euploid polyploid synthetic hexaploid wheats Triticum carthlicum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caldwell, K.S., Dvorak, J., Lagudah, E.S., Akhunov, E., Luo, M.C., Wolters, P., Powell, W. 2004. Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics 167:941–947.CrossRefGoogle Scholar
  2. de Wet, J.M.J. 1980. Origins of polyploids. In: Lewis, W.H. (ed.) Polyploidy: Biological relevance. Plenum Press, New York, USA. pp. 3–15.Google Scholar
  3. Dudnikov, A.J. 2000. Multivariate analysis of genetic variation in Aegilops tauschii from the world germplasm collection. Genet. Res. Crop Evol. 47:185–190.CrossRefGoogle Scholar
  4. Dudnikov, A.J., Kawahara, T. 2006. Aegilops tauschii: Genetic variation in Iran. Genet. Res. Crop Evol. 53:579–586.CrossRefGoogle Scholar
  5. Dvorak, J., Luo, M.C., Yang, Z.L., Zhang, H.B. 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97:657–670.CrossRefGoogle Scholar
  6. Fukuda, K., Sakamoto, S. 1992a. Cytological studies on unreduced male gamete formation in hybrids between tetraploid Emmer wheats and Aegilops squarrosa L. Jap. J. Breed. 42:255–266.CrossRefGoogle Scholar
  7. Fukuda, K., Sakamoto, S. 1992b. Studies on the factors controlling the formation of unreduced gametes in hybrids between tetraploid Emmer wheats and Aegilops squarrosa L. Jap. J. Breed. 42:747–760.CrossRefGoogle Scholar
  8. Giles, R.J., Brown, T. 2006. GluDy allele variations in Aegilops tauschii and Triticum aestivum: Implications for the origins of hexaploid wheats. Theor. Appl. Genet. 112:1563–1572.CrossRefGoogle Scholar
  9. Hammer, K, 1980. Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. (Studies towards a monographic treatment of wild plant collections). Kulturpflanze 28:33–180 (in German with English summary).CrossRefGoogle Scholar
  10. Kawahara, T. 1997. Catalogue of Aegilops-Triticum germ-plasm preserved in Kyoto Univ. No. 2. Plant Germ-plasm Institute, Fac. Agr., Kyoto Univ., Kyoto, Japan, pp. 108–114, 166.Google Scholar
  11. Kashkush, K., Feldman, M., Levy, A.A. 2002. Gene loss, silencing and activation in newly synthesized wheat allotetraploid. Genetics 160:1651–1659.PubMedPubMedCentralGoogle Scholar
  12. Kihara, H. 1944. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare (abstr). Agric. Hortic. 19:889–890 (in Japanese with English summary).Google Scholar
  13. Kihara, H. 1946. Maturation division in F1 hybrids between Triticum dicoccoides × Aegilops squarrosa. La Kromosomo 1:6–11 (in Japanese with English summary).Google Scholar
  14. Kihara, H., Lilienfeld, F. 1949. A new synthesized 6x-wheat. In: Proc. 8th Int. Cong. Genet. Hereditas 35: 307–319.Google Scholar
  15. Kihara, H., Tanaka, M. 1958. Morphological and physiological variation among Aegilops squarrosa strains collected in Pakistan, Afghanistan and Iran. Preslia 30:241–251.Google Scholar
  16. Lange, W., Jochemsen, G. 1992a. Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids. I. Two strategies for the production of the amphiploids. Euphytica 59:197–212.CrossRefGoogle Scholar
  17. Lange, W., Jochemsen, G. 1992b. Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids. II. Morphology and meiosis of the amphiploids. Euphytica 59:213–220.CrossRefGoogle Scholar
  18. Matsuoka, Y., Nasuda, S. 2004. Durum wheat as a candidate for the unknown female progenitor of bread wheat: An empirical study with a high fertile F1 hybrid with Aegilops tauschii Coss. Theor. Appl. Genet. 109:1710–1717.CrossRefGoogle Scholar
  19. Matsuoka, Y., Takumi, S., Kawahara, T. 2007. Natural variation for fertile F1 hybrid formation in allohexaploid wheat speciation. Theor. Appl. Genet. 115:509–518.CrossRefGoogle Scholar
  20. McFadden, E.S., Sears, E.R. 1944. The artificial synthesis of Triticum spelta. Genetics 30:14.Google Scholar
  21. McFadden, E.S., Sears, E.R. 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37:81–89, 107–116.CrossRefGoogle Scholar
  22. Mujeeb-Kazi, A., Rosas, V., Roldan, S. 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet. Res. Crop Evol. 43:129–134.CrossRefGoogle Scholar
  23. Nishikawa, K. 1964. Cytogenetical study on the artificial synthesis and the origin of common wheat. Res. Bull. Fac. Agr. Gifu Univ. 20:1–55 (in Japanese with English summary).Google Scholar
  24. Ozkan, H., Levy, A.A., Feldman, M. 2001. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747.PubMedPubMedCentralGoogle Scholar
  25. Tanaka, M. 1959. Newly synthesized amphidiploids from the hybrids, Emmer wheats × Aegilops squarrosa varieties. Wheat Inf. Serv. 8:8.Google Scholar
  26. Tzvelev, N.N. 1976. Grasses in the Soviet Union. Part I. English translation by Sharma, B.R. 1984., Nauka Publ., Leningrad, Soviet Union.Google Scholar
  27. van Slageren, M.W. 1994. Wild wheat: A monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agr. Univ., Wageningen, pp. 326–344.Google Scholar
  28. Xu, S., Dong, Y. 1989. Cytogenetic study on the formation of amphiploids in the F1 hybrids of Triticum carthlicum Nevski var. darginicum and Aegilops tauschii Cosson. Acta Agron. Sin. 15:251–258 (in Chinese with English summary).Google Scholar
  29. Xu, S., Dong, Y. 1992. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome 35:379–384.CrossRefGoogle Scholar
  30. Xu, S.J., Joppa, L.R. 1995. Mechanisms and inheritance of first division restitution in hybrids of wheat, rye and Aegilops squarrosa. Genome 38:607–615.CrossRefGoogle Scholar
  31. Xu, S.J., Joppa, L.R. 2000. First-division restitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa. Plant Breed. 119:233–241.CrossRefGoogle Scholar
  32. Zar, J.H. 2010. Biostatistical analysis (5th ed.). Pearson Educ. Inc., New Jersey, USA.Google Scholar
  33. Zhang, L., Chen, Q., Yuan, Z., Xiang, Z., Zheng, Y., Liu, D. 2008a. Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii. J. Genet. Genomics 35:617–623.CrossRefGoogle Scholar
  34. Zhang, L.Q., Yan, Z.H., Dai, S.F., Chen, Q.J., Yuan, Z.W., Zheng, Y.L., Liu, D.C. 2008b. The crossability of Triticum turgidum with Aegilops tauschii. Cereal Res. Commun. 36:417–427.CrossRefGoogle Scholar
  35. Zhang, L.Q., Yen, Y., Zheng, Y.L., Liu, D. C. 2007. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex. Plant Reprod. 20:159–166.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

Authors and Affiliations

  1. 1.Department of AgricultureTokyo University of AgricultureAtsugi, KanagawaJapan

Personalised recommendations