Membrane thermostability and chlorophyll fluorescence as indices of high temperature stress tolerance and performance in wheat (Triticum aestivum L.)

Abstract

An experiment was conducted for the measurement of membrane thermostability and chlorophyll fluorescence in parents and their six F1’s at post-anthesis stage. Parents and F1’s showed significant variation for high temperature stress tolerance in late sown conditions. Genotype PBW 435 and the cross PBW 343 × PBW 435 exhibited less relative injury and greater thermotolerance possibly through maintaining cellular membrane integrity under high temperature stress. Data based on chlorophyll fluorescence revealed reduction of mean values of all genotypes and their F1’s for Fv/Fm, proportion of efficiently working Photo system II (PSII) units among the total PS II population in late sown conditions. The genotypes EIGN 8, UP 2425 and Raj 3765 and F1s EIGN 8 × UP 2425 and PBW 343 × WH 283 figured important for further wheat improvement programmes.

References

  1. Araus, J.L., Casadesus, J., Bort, J. 2001. Recent tools for the screening of physiological determining yield. In: Reynolds, M.P., Oriz Monastero, J.I., Mcnab, A. (eds), Application of Physiology in Wheat Breeding. CIMMYT, Mexico, D.F., pp. 59–77.

    Google Scholar 

  2. Al-Khatib, K., Paulsen, G.M. 1984. Mode of high temperature injury to wheat during grain development. Physiol. Plant 61: 363–368.

    CAS  Article  Google Scholar 

  3. Babar, M.A, Reynolds, M.P., Ginkel, M.V., Klatt, A.R., Raun, W.R., Stone, M.L. 2006. Spectral reflectance to genetic variation for biomass, leaf chlorophyll and canopy temperature in wheat. Crop Sci. 46: 1046–1057.

    Article  Google Scholar 

  4. Blum, A., Ebercon, A. 1981. Cell membrane stability as measure of drought and heat tolerance in wheat. Crop Sci. 21: 43–47.

    Article  Google Scholar 

  5. Blum, A., Klueva, N., Nguyen, H.T. 2001. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117: 117–123.

    Article  Google Scholar 

  6. Fischer, R.A., Maurer, O.R. 1976. Crop temperature modification and yield potential in a dwarf spring wheat. Crop Sci. 16: 855–859.

    Article  Google Scholar 

  7. Fokar, M., Nguyen, H.T., Blum, A. 1998. Heat tolerance in spring wheat. I, Estimating cellular thermotolerance and its heritability. Euphytica 104: 1–8.

    Article  Google Scholar 

  8. Hetherington, S.E., Smillie, R.M. 1982. Tolerance of Borya nitida, a poikilohyfrous angiosperm, to heat, cold and high-light stress in the hydrated state. Planta 155: 76–81.

    CAS  Article  Google Scholar 

  9. Ibrahim, A.M.H., Quick, J.S. 2001. Heritability of heat tolerance in winter and spring wheat. Crop Sci. 41: 1401–1405.

    Article  Google Scholar 

  10. Krause, G.H., Weis, E. 1984. Chlorofluorescense as a tool in plant physiology. II. Interpretation of fluorescence signal. Photosyn. Res. 5: 139–157.

    CAS  Article  Google Scholar 

  11. Lu, C., Zhang, J. 1998. Effect of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Aust. J. Plant Physiol. 25: 883–892.

    CAS  Google Scholar 

  12. Maxwell, K., Johnson Giles, N. 2000. Chlorophyll fluorescence — Apractical guide. J. Exptl. Bot. 51: 659–668.

    CAS  Article  Google Scholar 

  13. Moffatt, J.M., Sears, R.G., Cox, T.S., Paulson, G.M. 1990. High temperature tolerance at reproductive growth in wheat. I. Evaluation by chlorophyll fluorescence. Crop Sci. 30: 881–885.

    CAS  Article  Google Scholar 

  14. Munjal, R., Dhanda, S.S., Rana, R.K., Singh, I. 2004. Membrane thermostability as an indicator of heat tolerance at seedling stage in bread wheat. National J. Plant Improv. 6: 133–135.

    Google Scholar 

  15. Nagao, R.T. 1989. The heat shock responses in plants: Short term heat treatment régimes and thermotolerance. In: Cherry, J.H. (ed.), Environmental Stress in Plants. NATO ASI series, pp. 331–342.

  16. Prasad, B., Carver, B.F., Stone, M.L., Babar, M.A., Rain, W.R., Klatt, A.R. 2007. Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices. Crop Sci. 47: 1416–1425.

    Article  Google Scholar 

  17. Rane, J., Nagarajan, S. 2004. High temperature index for field evaluation of heat tolerance in wheat varieties. Agricultural Systems 79: 243–255.

    Article  Google Scholar 

  18. Reynolds, M.P., Rajaram, S., Sayre, K.D. 1999. Physiological and genetic changes of irrigated wheat in the post green revolution period and approaches for meeting projected global demand. Crop Sci. 39: 1611–1621.

    Article  Google Scholar 

  19. Reynolds, M.P., Trethowan, R.M., van Ginkel, M., Rajram, S. 2001. Application of physiology in wheat breeding. In: Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A. (eds), Application of Physiology in Wheat Breeding. CIMMYT, Mexico, D.F., pp. 2–10.

    Google Scholar 

  20. Saadalla, M.M., Quick, J.S., Shanahan, J.F. 1990a. Heat tolerance in winter wheat II. Membrane theromostabilty and field performance. Crop Sci. 30: 1248–1251.

    Article  Google Scholar 

  21. Saadalla, M.M., Shanahan, J.F., Quick, J.S. 1990b. Heat tolerance in winter wheat I. Hardening and genetic effects on membrane thermostability. Crop Sci. 30: 1243–1247.

    Article  Google Scholar 

  22. Sayed, O.H. 2003. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41: 321–330.

    CAS  Article  Google Scholar 

  23. Shanahan, J.F., Edwards, I.B., Quick, J.S., Fenwick, J.R. 1990. Membrane thermo stability and heat tolerance of spring wheat. Crop Sci. 30: 247–251.

    Article  Google Scholar 

  24. Shpiler, L., Blum, A. 1986. Differential reaction of wheat cultivars to hot environments. Euphytica 35: 483–492.

    Article  Google Scholar 

  25. Sikder, S., Ahmed, J.U., Hossain, T., Mian, M.A.K., Hossain, M.M. 1999. Membrane thermo stability, grain growth and contribution of pre-anthesis stem reserves to grain weight of wheat under late seeded conditions. Thai. J. Agric. Sci. 32: 465–473.

    Google Scholar 

  26. Singh, N.B., Singh, Y.P., Singh, Y.P.N. 2005. Variation in physiological traits in promising wheat varieties under late sown conditions. Indian J. Plant. Physiol. 10: 171–175.

    Google Scholar 

  27. Smillie, R.M., Gibbons, G.C. 1981. Heat tolerance and heat hardening in crop plants measured by chlorophyll fluorescence. Carlsberg Res. Commun. 46: 395–403.

    Article  Google Scholar 

  28. Strasser, R.J. 1988. A concept of stress and its application in remote sensing. In: Lichtenthaler, H.K. (ed.), Application of Chlorophyll Fluorescence. Kluwer Academic Publishers, The Netherlands, pp. 333–337.

    Google Scholar 

  29. Sullivan, C.Y. 1972. Mechanisms of heat and drought resistance in grain sorghum and methods of measurement. In: Rao, N.G.P., House, L.R. (eds), Sorghum in the Seventies. Oxford and IBH Publishing Co., New Delhi, India, pp. 112–120.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. K. Behl.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Sheikh, S., Behl, R.K., Dhanda, S.S. et al. Membrane thermostability and chlorophyll fluorescence as indices of high temperature stress tolerance and performance in wheat (Triticum aestivum L.). CEREAL RESEARCH COMMUNICATIONS 38, 335–344 (2010). https://doi.org/10.1556/CRC.38.2010.3.4

Download citation

Keywords

  • membrane thermostability
  • chlorophyll fluorescence
  • thermotolerance
  • bread wheat