Cereal Research Communications

, Volume 38, Issue 3, pp 317–326 | Cite as

Identification and mapping of QTLs for agronomic traits in indica — indica cross of rice (Oryza sativa L.)

  • A. Sabouri
  • M. ToorchiEmail author
  • B. Rabiei
  • S. Aharizad
  • A. Moumeni
  • R. K. Singh
Open Access


Rice (Oryza sativa L.) is one of the most important crops in the world, especially Asian countries. Genetics of important traits in rice for yield improvement have always been a major breeding objective. Agronomic traits are inherited quantitatively, so quantitative trait loci (QTL) mapping for the potential use of molecular markers would be very helpful to plant breeders in developing improved rice varieties. In this investigation, a SSR linkage map of 1440.7cM of rice was constructed using 105 polymorphic simple sequence repeat (SSR) markers. The mapping population of 236 F2:3 families derived from the cross of two rice varieties (Gharib × Sepidroud) was used for QTL mapping of agronomic traits. As many as 38 QTLs were detected to be associated with agronomic characteristics; some of them are being reported for the first time. The identified QTLs on specific chromosome regions explaining high phenotypic variance could be considered to use in marker-assisted selection (MAS) programs.


agronomic traits linkage map marker-assisted selection QTL mapping rice 


  1. Aluko, G.K. 2003. Genetic mapping of agronomic traits from the interspecific cross Oryza sativa (L.) and Oryza glaberrima (Steud.). Ph.D. thesis of agronomy. Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA.Google Scholar
  2. Basten, C.J., Weir, B.S., Zeng, Z.B. 1997. QTL cartographer: A reference manual and tutorial for QTL mapping. North Carolina State University, Raleigh, NC, USA, p. 163.Google Scholar
  3. Brondani, C.P., Rangel, H.N., Brondani, R.P.V., Ferreira, M.E. 2002. QTL mapping and introgression of yield related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor. Appl. Genet. 104: 1192–1203.CrossRefGoogle Scholar
  4. Cho, Y.C., Suh, J.P., Choi, I.S., Hong, H.C., Baek, M.K., Kang, K.H., Kim, Y.G., Ahn, S.N., Choi, H.C., Hwang, H.G., Moon, H.P. 2003. QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon. Treat. of Crop Res. 4: 19–29.Google Scholar
  5. Cho, Y.G., Kang, H.J., Lee, J.S., Lee, Y.T., Lim, S.J., Gauch, H., Eun, M.Y., McCouch, S.R. 2007. Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and location. Crop Sci. 47: 2403–2417.CrossRefGoogle Scholar
  6. Du, J., Fan, Y., Wu, J., Zhang, J. 2008. Dissection of QTLs for yield traits on the short arm of rice chromosome 6. Agric. Sci. in China 5: 513–520.CrossRefGoogle Scholar
  7. Falconer, D.S., Mackay, F.C. 1996. Introduction to Quantitative Genetics. Longman. London, UK.Google Scholar
  8. IRRI, 1996. Standard Evaluation System for rice. 4th edition, INGER Genetics Resource Center. IRRI, Manila. Philippines.Google Scholar
  9. Ishimaru, K., Yano, M., Aoki, N., Ono, T., Hirose, T., Lin, S.Y., Monna, L., Sasaki, T., Ohsugi, R. 2001. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed tags. Theor. Appl. Genet. 102: 793–800.CrossRefGoogle Scholar
  10. Jiang, G.H., Xu, C.G., Li, X.H., He, Y.Q. 2004. Characterization of the genetic basis for yield and its component traits of rice revealed by doubled haploid population. Acta Genetica Sinica 31: 63–72.PubMedGoogle Scholar
  11. Kosambi, D. 1944. The estimation of map distances from recombination values. Ann. Eugen. 12: 172–175.CrossRefGoogle Scholar
  12. Manly, K.F., Olson, J.M. 1999. Overview of QTL mapping software and introduction to map manager QT. Mammalian. Genome 10: 327–334.CrossRefGoogle Scholar
  13. Marri, P.R., Sarla, N., Reddy, V.L.N., Siddiq, E.A. 2005. Identification and mapping of yield and related QTLs from an Indian accession of Oryza rufipogon, BMC Genet. 6: 33.CrossRefGoogle Scholar
  14. McCouch, S.R., Teytelman, L., Xu, Y.B., Lobos, K.B., Clare, K., Walton, M., Fu, B., Maghirang, R., Li, Z.K., Xing, Y.Z., Zhang, Q.F., Kono, I., Yano, M., Fjellstrom, R., DeClerck, G., Schneider, D., Cartinhour, S., Ware, D., Stein, L. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9: 199–207.CrossRefGoogle Scholar
  15. Mei, H.W., Luo, L.J., Ying, C.S., Wang, Y.P., Yu, X.Q., Guo, L.B., Paterson, A.H., Li, Z.K. 2003. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor. Appl. Genet. 107: 89–101.CrossRefGoogle Scholar
  16. Saghi Maroof, M.A., Biyashev, R.M., Yang, G.P., Zhang, Q., Allard, R.W. 1994. Extraordinarily polymorphic microsatillate DNA in barely species diversity, chromosomal location, and population dynamics. Proc. Nat. Acad. Sci. USA 91: 5466–5570.CrossRefGoogle Scholar
  17. Suh, J.P., Ahn, S.N., Cho, Y.C., Kang, K.H., Choi, I.S., Kim, Y.G., Suh, H.S., Hong, H.C. 2005. Mapping of QTLs for yield traits using an advanced backcross population from a cross between Oryza sativa and O. glaberrima. Korean J. Breed. 37: 214–220.Google Scholar
  18. Tanksley, S.D. 1993. Mapping polygenes. Annu. Rev. Genet. 27: 205–233.CrossRefGoogle Scholar
  19. Temnykh, S., Park, W.D., Ayres, N., Cartinhour, S., Hauck, N., Lipovich, L., Cho, Y.G., Ishii, T., McCouch, S.R. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100: 697–712.CrossRefGoogle Scholar
  20. Xiao, J., Li, J., Yuan, L., Tanksley, S.D. 1996. Identification of QTL affecting traits of agronomic importance in a recombinant inbred population derived from sub-specific rice cross. Theor. Appl. Genet. 92: 230–244.CrossRefGoogle Scholar
  21. Yamamoto, T., Taguchi-Shiobara, F., Ukai, Y., Sasaki, T., Yano, M. 2001. Mapping quantitative trait loci for days-to-heading and culm, panicle and internode lengths in a BC1F3 population using an elite rice variety. Koshihikari, as the recurrent parent. Breed. Sci. 51: 63–71.CrossRefGoogle Scholar
  22. Yamagishi, M., Takeuchi, Y., Kono, I., Yano, M. 2002. QTL mapping for panicle characteristics in temperate japonica rice. Euphytica 128: 219–224.CrossRefGoogle Scholar
  23. Yano, M., Sasaki, T. 1997. Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol. 35: 145–153.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Sabouri
    • 1
  • M. Toorchi
    • 2
    Email author
  • B. Rabiei
    • 1
  • S. Aharizad
    • 2
  • A. Moumeni
    • 3
  • R. K. Singh
    • 4
  1. 1.Department of Agronomy & Plant Breeding, Faculty of Agricultural SciencesUniversity of GuilanRashtIran
  2. 2.Department of Crop Production & Breeding, Faculty of AgricultureUniversity of TabrizTabrizIran
  3. 3.Rice Research InstituteAmolIran
  4. 4.International Rice Research InstituteMetro ManilaPhilippines

Personalised recommendations