Cereal Research Communications

, Volume 38, Issue 3, pp 429–439 | Cite as

Drought tolerance of land races of emmer wheat in comparison to soft wheat

  • P. KonvalinaEmail author
  • J. Moudrý
  • L. Dotlačil
  • Z. Stehno
  • J. MoudrýJr.
Open Access


As water deficiency becomes a more frequent cause of the reduction in wheat yield levels, the search for donors of drought tolerance to be bred into adapted land races becomes urgent. Drought tolerance has been evaluated by the 13C discrimination method in six land races of emmer wheat (Triticum dicoccum SCHRANK), compared with land races, obsolete cultivars and modern varieties of soft wheat (Triticum aestivum L.). The results of a two-year trial show that most of the genetic resources of emmer wheat, and intermediate land races of wheat are predisposed to drought tolerance. These varieties respond to dry conditions more sensitively, as they close their pores earlier (a lower value of the discrimination of 13C isotope). As for other land races and the top modern varieties of soft wheat, they are not thought to be predisposed to drought tolerance and their crop stands are liable to serious damage.


drought tolerance discrimination of 13emmer soft wheat 


  1. Araus, J.L., Slafer, G.A., Reynolds, M.P., Rovo, C. 2002. Plant breeding and drought in C-3 cereals: What should we breed for? Annals of Botany 89: 925–940.CrossRefGoogle Scholar
  2. Badr, S., Bahieldin, A., Abdelgawad, B., Badr, A. 2005. Construction of a dehydrin gene casette for drought tolerance from wild origin for wheat transformation. Intl. J. Bot. 1: 175–182.CrossRefGoogle Scholar
  3. Bareš, I., Vlasák, M., Stehno, Z., Dotlačil, L., Faberová, I., Bartoš, P. 2002. 50 let studia genofondu pšenice (rodu Triticum L.) ve Výzkumném ústavu rostlinné výroby v Praze-Ruzyni (550 years of study of wheat in Crop Research Institute in Prague Ruzyně). Genetické zdroje 86: 43–57.Google Scholar
  4. Boutton, T.W. 1991. Stable carbon isotope rations of natural materials: 1: Sample preparation and mass spectrometer analysis. In: Coleman, D.C., Fry, B. (eds), Carbon Isotope Techniques. Academic Press Inc., New York, USA, pp. 155–171.CrossRefGoogle Scholar
  5. Brini, F., Hanin, M., Lumbreras, V., Irar, S., Pagés, M., Masmoudi, K. 2007. Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci. 172: 20–28.CrossRefGoogle Scholar
  6. Bucur, D., Savu, P. 2006. Considerations for the design of intercepting drainage for collecting water from seep areas. J. Irrig. Drain. E-ASCE 132: 597–599.CrossRefGoogle Scholar
  7. Condon, A.G., Richards, R.A., Rebetzke, G.J., Farquhar, G.D. 2004. Breeding for high water-use efficiency. J. Exp. Bot. 55: 2447–2460.CrossRefGoogle Scholar
  8. Davood, A., Ashkboos, F., Sadeghi, M., Bahram, D.N. 2004. Evaluation of salinity tolerance in landrace wheat germplasms of Cereals Research Collection Department. Isfahan Agricultural and Natural Resources Research Center Publisher, Isfahan, Iran, 14 pp.Google Scholar
  9. Ehdaie, B., Waines, J.G., Hall, A.E. 1988. Differential responses of landrace and improved spring wheat genotypes to stress environments. Crop Sci. 28: 838–842.CrossRefGoogle Scholar
  10. Ehdaie, B., Hall, A.E., Fagquahar, G.D., Nguyen, H.T., Waines, J.G. 1991. Water-use efficiency and carbon isotope discrimination in wheat. Crop Sci. 31: 1282–1288.CrossRefGoogle Scholar
  11. Farquhar, G.D., Richards, R.A. 1984. Isotopic composition of plant carbon correlates with water use efficiency of wheat. Aust. J. Plant Physiol. 11: 539–552.Google Scholar
  12. Farquhar, G.D., Lloyd, L. 1993. Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer, J.R., Hall, A.E., Farquhar, G.D. (eds), Stable Isotopes and Plant Carbon-water Relations. Academic Press Inc., New York, USA, pp. 47–70.CrossRefGoogle Scholar
  13. Ferrio, J.P., Mateo, M.A., Bort, J., Abdalla, O., Voltas, J., Araus, J.L. 2007. Relationships of grain d13C and d18O with wheat phenology and yield under water-limited conditions. Ann. Appl. Biol. 150: 207–215.CrossRefGoogle Scholar
  14. Gloser, J., Prášil, I. 1998. Fyziologie stresu (Physiology of stress). In: Procházka, S., Macháčková, I., Krekule, J., Šebánek, J. (eds), Fyziologie rostlin (Plant physiology). ACADEMIA, Praha, pp. 412–431.Google Scholar
  15. Hoffmann, B., Burucs, Z. 2005. Adaptation of wheat (Triticum aestivum L.) genotypes and related species to water deficiency. Cereal Res. Commun. 33: 681–687.CrossRefGoogle Scholar
  16. Lopez, C.G., Banowetz, G., Peterson, C.J., Kronstad, W.E. 2001. Differential accumulation of a 24-kd dehydrin protein in wheat seedlings correlates with drought stress tolerance at grain filling. Hereditas 135: 175–181.CrossRefGoogle Scholar
  17. Lopez, C.G., Banowetz, G., Peterson, C.J., Warren, E., Kronstad, W.E. 2003. Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci. 43: 577–582.CrossRefGoogle Scholar
  18. Marconi, M., Cubadda, R. 2005. Emmer wheat. In: Abdel-Aal, E.S.M., Wood, P. (eds), Speciality Grains for Food and Feed. American Association of Cereal Chemists, Inc. St. Paul, Minesota, USA, pp. 63–108.Google Scholar
  19. Matuz, J., Cseuz, L., Fonad, P., Pauk, J. 2008. Wheat breeding for drought tolerance by novel field selection methods. Cereal Res. Commun. 36(Suppl.):123–126.Google Scholar
  20. O’Leary, M.H. 1993. Biochemical basis of carbon isotope fractionation. In: Ehleringer, J.R., Hall, A.E., Farquhar, G.D. (eds), Stable Isotopes and Plant Carbon-water Relations. Academic Press Inc., New York, USA, pp. 19–28.CrossRefGoogle Scholar
  21. Rebetzke, G.J., Condon, A.G., Richards, R.A., Farquhar, G.D. 2002. Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci. 42: 739–745.CrossRefGoogle Scholar
  22. Reddy, M.M., Yenagy, N.B., Rao, M., Srinivasan, C.N., Hanchinal, R.R. 1998. Grain and gluten quality of some cultivars of wheats species and their suitability for preparation of traditional South Indian sweet products. J. Food Sci. Technol. 35: 441–444.Google Scholar
  23. Reynolds, M., Skovmand, B., Trethovan, R., Pfeiffer, W. 1999. Evaluating a conceptual model for drought tolerance. Strategic Planning Workshop — A molecular approaches for the genetic improvement of cereals for stable production in water-limited environments, El Batan, Mexico, 21–25 June 1999, pp. 49–53.Google Scholar
  24. Reynolds, M., Dreccer, F., Trethowan, R. 2007. Drought-adaptive traits derived from wheat wild relatives and landraces. J. Exp. Bot. 58: 177–187.CrossRefGoogle Scholar
  25. Skovmand, B., Reynolds, M.P. 2000. Increasing Yield Potential for Marginal Areas by Exploring Genetic Resources Collections. 11. Regional Wheat Workshop for Eastern, Central and Southern Africa, Addis Ababa, Ethiopia, 18–22 Sep. 2000, 436 pp.Google Scholar
  26. Stagnari, F., Codianni, P., Pisante, M. 2008. Agronomic and kernel quality of ancient wheats grown in central and Southern Italy. Cereal Res. Commun. 36: 313–326.CrossRefGoogle Scholar
  27. Stehno, Z., Konvalina, P., Dotlačil, L. 2008. Metodika pěstování pšenice dvouzrnky (Emmer wheat growing). VÚRV, v.v.i., Praha, Czech Republic, 20 pp.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • P. Konvalina
    • 1
    Email author
  • J. Moudrý
    • 1
  • L. Dotlačil
    • 2
  • Z. Stehno
    • 2
  • J. MoudrýJr.
    • 1
  1. 1.Faculty of AgricultureUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Crop Research Institute06 PragueCzech Republic

Personalised recommendations