Identification of QTLs and associated molecular markers related to starch degradation in wheat seedlings (Triticum aestivum L.) under saline stress

Abstract

Mapping of quantitative trait loci (QTL) was carried out in a set of 114 RILs of the International Triticeae Mapping Initiative (ITMI) mapping population under salt stress. Seedling population was grown during 8 days, under salt treatment (Hoagland’s ½ strength + 110 mM NaCl, EC 12.4 mS/cm) and normal treatment (Hoagland’s ½ strength, EC 0.9 mS/cm). We calculated starch degradation, measuring the dry weight of the grains on the 4th, 6th and 8th days of culturing. Formation of biomass was calculated measuring leaf and root length on the 4th, 6th and 8th days of culture. Interval mapping resulted in 13 QTLs, 2 major QTLs (LOD>3) and 11 minors QTLs (LOD>2). A total of 10 QTLs were associated with saline treatment and 3 QTLs at normal treatment. The data show that a high percentage of QTLs were in chromosomes 2B (3, 23.0%), and 1A (3, 23.0%), followed by 4D (2, 13.6%).

References

  1. Batley, I.L., Hayden, M.J., Cai, S., Sharp, P.J., Cornish, G.B., Morell, M.K. Appels, R. 2001. Genetic mapping of commercially significant starch characteristics in wheat crosses. Aust. J. Agric. Res. 52:1287–1296.

    Article  Google Scholar 

  2. Bernstein, L., Hayward, H.E. 1958. Physiology of salt tolerance. Annu. Rev. Plant Physiol. 9:25.

    CAS  Article  Google Scholar 

  3. Boggini, G., Cattaneo, M., Paganoni, C., Vaccino, P. 2001. Genetic variation for waxy proteins and starch properties in Italian wheat germoplasm. Euphytica 119:113–116.

    Article  Google Scholar 

  4. Cadalen, T., Sourdille, P., Charmet, G., Tixier, M.H., Gay, G., Boeuf, C., Bernard, S., Leroy, P., Bernard, M. 1998. Molecular linked to genes affecting plant height wheat using a doubled-haploid population. Theor. Appl. Genet. 96:933–940.

    CAS  Article  Google Scholar 

  5. Cattivelli, L., Baldi, P., Crosatti, C., Di Fonso, N., Faccioli, P., Grossi, M., Mastrangelo, A., Pecchioni, N., Stanca, M. 2002. Chromosome regions and stress related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol. Biol. 48:649–665.

    CAS  Article  Google Scholar 

  6. CONAGUA. http://www.cna.gob.mx/eCNA/Espaniol/Directorio/Default.aspx

  7. Díaz de León, J.L., Escoppinichi, R., Zavala, R., Mujeeb-Kazi, A. 2000a. A sea-water testing protocol and the performance of a tester set of accumulated wheat germplasms. Annu. Wheat Newsl. 46:88–90.

    Google Scholar 

  8. Díaz de León, J.L., Zavala, R., Escoppinichi, R., Mujeeb-Kazi, A. 2000b. Identification of four bread cultivars tolerant to salinity following sea-water field evaluations as varietal candidates for Baja California, México. Annu. Wheat Newsl. 46:90–91.

    Google Scholar 

  9. Díaz de León, J.L., Escoppinichi, R., Molina, E., López-Cesati, R., Mujeeb-Kazi, A. 2001. Salt tolerant bread wheat germplasm. Annu. Wheat Newsl. 47:117–118.

    Google Scholar 

  10. Dubcovsky, J., Santa Maria, G., Epstein, E., Luo, M.C., Dvorak, J. 1996. Mapping of the K+-Na discrimination locus Knal in wheat. Theor. Appl. Genet. 92:448–454.

    CAS  Article  Google Scholar 

  11. Dvorak, J., Ross, K., Medlinger, S. 1985. Transfer of salt tolerance from Elytrigia ponica (Podp.) Holub to wheat by the addition of an incomplete Elytrigia genome. Crop Sci. 25:306–309.

    Article  Google Scholar 

  12. Dvorak, J., Ross, K. 1986. Expression of tolerance of N+, K+, Mg+2, Cl, and SO−2 ions and sea water in the amphiploid of Triticum aestivum × Elytrigia elongata. Crop Sci. 2:658–660.

    Article  Google Scholar 

  13. Dvorak, J., Gorham, J. 1992. Methodology of gene transfer by homoeologous recombination into Triticum turgidum: Transfer of K+/Na+ discrimination from Triticum aestivum. Genome 35:639–646.

    Article  Google Scholar 

  14. Dvorak, J., Noaman, M.M., Goyal, S., Gorham, J. 1994. Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor. Appl. Genet. 87:872–877.

    CAS  Article  Google Scholar 

  15. Franco, M.K., Gámez, H., Zavala, F., Moreno, S., Díaz de León, J.L., Martínez, S., González, M. 2004. Degradación de almidón y actividad de alfa amilasa en semillas de sorgo bajo sequía osmótica (Degradation of starch and alpha amylase activity in sorghum seeds under osmotic drought). RESPIN. Special Issue. Nuevo León, Mexico. 6:65. (In Spanish)

    Google Scholar 

  16. Gorham, J., Hardy, C., Wyn-Jones, R.G., Joppa, L., Law, C.N. 1987. Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor. Appl. Genet. 74:484–488.

    Article  Google Scholar 

  17. Gorham, J. 1992. Salt tolerance of plants. Sci. Prog. Oxford, UK. 76:273–285.

    Google Scholar 

  18. James, R.A., Davenport, R.J., Munns, R. 2006. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax21. Plant Physiol. 142:1537–1547.

    CAS  Article  Google Scholar 

  19. Kingsbury, R.W., Epstein, E. 1984. Selection for salt-resistant spring wheat. Crop Sci. 24:310–315.

    Article  Google Scholar 

  20. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, I. 1987. MAPMARKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.

    CAS  Article  Google Scholar 

  21. Läuchli, A. 1984. Salt exclusion: and adaptation of legumes for crops and pastures under saline conditions. In: Staples, R.C. (ed.), Salinity tolerance in plants: Strategies for crop improvement. Wiley, New York. USA. pp. 171–187.

    Google Scholar 

  22. Li, Z., Rahman, S., Kosar, J., Hashemi, B., Mourille, G., Appels, R., Morell, M.K. 1999. Cloning and characterization of a gene encording wheat starch synthase. Theor. Appl. Genet. 98:1208–1216.

    CAS  Article  Google Scholar 

  23. Lorenz, O.A., Maynard, D.N. 1980. Knott’s handbook for vegetable growers. 2nd edition. Wiley-Interscience. New York, USA, 390 pp.

    Google Scholar 

  24. Masoj, P., Zawistowski, J., Howes, N.K., Aung, T., Gale, M.D. 1993. Polymorphism and chromosomal location of endogenous alfa-amylase inhibitor genes in common wheat. Theor. Appl. Genet. 85:1043–1048.

    Article  Google Scholar 

  25. McIntosh, R.A., Hart, G.E., Devos, K.M., Gale, M.D., Rogers, W.J. 1998. Catalogue of gene symbols for wheat. In: Slinkard, A.E. (ed.), Proc. Ninth International Wheat Genetics Symposium, Vol. 5, University Extension Press, University of Saskatchewan, Saskatoon, Canada. pp. 1–236.

    Google Scholar 

  26. Munns, R., Husain, S., Rivelli, A.R., James, R.A., Condon, A.G., Lindsay, M.P., Lagudah, E.S., Schachtman, D.P., Hare, R.A. 2002. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant and Soil. 247:93–105.

    CAS  Article  Google Scholar 

  27. Munns, R., James, R.A. 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil. 253:201–218.

    CAS  Article  Google Scholar 

  28. Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167:645–663.

    CAS  Article  Google Scholar 

  29. Nakamura, T., Yamamori, M., Hidaka, S., Hocino, T. 1992. Expression of HMW Wx protein in Japanese common wheat (Triticum aestivum L.) cultivars. Japan J. Breed. 42:681–685.

    CAS  Article  Google Scholar 

  30. Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S. 1993. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochem. Genet. 31:75–86.

    CAS  Article  Google Scholar 

  31. Nelson, J.C. 1997. QGENE: Software for mapmarker-based genomic analysis and breeding. Mol. Breed. 3:239–245.

    CAS  Article  Google Scholar 

  32. Okuno, K. 2004. Germplasm enhancement and breeding strategies for crop quality in Japan. Crop Scie. Fourth Internat. Crop Sci. Congress. Available online: http://www.cropscience.org.au/icsc2004/symposia/5/1/2135_okuno.htm

  33. Rahman, S., Kosar-Hashemi, B., Samuel, M.S., Hill, A., Abbot, D.C., Skerritt, J.H., Preiss, J., Appels, R., Morell, M.K. 1995. The mayor proteins of wheat endosperm starch granules. Aust. J. Plant Physiol. 22:793–803.

    CAS  Google Scholar 

  34. Reynolds, M.P., Ortiz-Monasterio, J.L., McNab, A. 2001. Application of physiology in wheat breeding. Mexico, D.F.: CIMMYT. pp. 101–110.

    Google Scholar 

  35. Royo, A., Aragues, R. 1993. Validation of salinity crop production functions obtained with the triple line source sprinkler system. Agron. J. 85:795–800.

    Article  Google Scholar 

  36. SAGARPA. Technical Sheet-19. 2003. http://www.sagarpa.gob.mx/cgcs

  37. Shannon, M.C. 1997. Adaptation of plants to salinity. Advances in Agronomy 60:75–120.

    Article  Google Scholar 

  38. Sayed, J. 1985. Diversity of salt tolerance in a germplasm collection of wheat (Triticum aestivum). Theor. Appl. Genet. 69:651–657.

    CAS  Article  Google Scholar 

  39. Szabolcs, I. 1994. Soils and salinisation. In: Pessarakali, M. (ed.), Handbook of plant and crop stress. Marcel Dekker, New York, USA. pp. 3–11.

    Google Scholar 

  40. Tester, M., Davenport, R. 2003. Review article Na+ tolerance and Na+ transport in higher plants. Annals of Botany 91:503–527.

    CAS  Article  Google Scholar 

  41. Udall, J.A., Souza, E., Anderson, J., Sorrells, M.E., Zemetra, R.S. 1999. Quantitative trait loci for flour viscosity in winter wheat. Crop. Sci. 39:238–242.

    CAS  Article  Google Scholar 

  42. Vrinten, P.L., Nakamura, T. 2000. Wheat granule-bound starch synthases I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol. 122:255–263.

    CAS  Article  Google Scholar 

  43. Yamamori, M., Endo, T.R. 1996. Variation of starch proteins and chromosome mapping of their coding genes in common wheat. Theor. Appl. Genet. 93:275–281.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. V. García-Suárez.

Additional information

Communicated by A. Aniol

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

García-Suárez, J.V., Díaz de León, J.L. & Röder, M.S. Identification of QTLs and associated molecular markers related to starch degradation in wheat seedlings (Triticum aestivum L.) under saline stress. CEREAL RESEARCH COMMUNICATIONS 38, 163–174 (2010). https://doi.org/10.1556/CRC.38.2010.2.2

Download citation

Keywords

  • QTLs
  • molecular markers
  • Triticum aestivum
  • salinity
  • rate of starch degradation
  • leaf length
  • root length