Advertisement

Cereal Research Communications

, Volume 38, Issue 2, pp 272–284 | Cite as

Inheritance for economically important traits in popcorn from distinct heterotic groups by Hayman’s diallel

  • V. Q. R. da Silva
  • A. T. Amaral JúniorEmail author
  • C. A. Scapim
  • S. P. Freitas Júnior
  • L. S. A. Gonçalves
Open Access
Article

Abstract

When using genotypes of different heterotic groups, the scarcity of information on the inheritance of traits that are of economic importance to popcorn has hindered the implementation of more appropriate methodologies to obtain higher genetic gains. To date, the diallel of Hayman (1954) has not been used by popcorn researchers, but it has robust properties that can minimize this gap in scientific information. Therefore, ten popcorn lines were used to obtain 45 diallel hybrids, which were evaluated along with their parents and three controls in a randomized complete block design with three replicates at two different locations in the State of Rio de Janeiro, Brazil. Three agronomic traits of interest for the crop were scored based on the Hayman method (1954). The positive correlation between \({\overline Y _{ii}}\) and Wi + Vi showed that mostly recessive genes determine the expression of popping expansion (PE). It was concluded that dominant genes are mostly responsible for the trait expression of mean ear weight (EW) and grain yield (GY). A predominance of non-additive genetic effects for EW and GY existed and a prevalence of partial dominance and a high narrow-sense determined heritability for PE. For EW and GY, overdominance predominated and heritabilities were moderate to low. As an interpopulation method, popcorn lines with high concentrations of recessive alleles linked to the expression of PE can provide gains in PE and yield traits.

Keywords

Zea mays allelic interaction allelic symmetry selection limit number of genes 

References

  1. Alexander, D.E., Creech, R.G. 1977. Popcorn. In: Sprague, G.F. (ed.), Corn and Corn Improvement. Iowa State University Press, Ames, Iowa, USA, pp. 385–390.Google Scholar
  2. Amaral Júnior, A.T., Casali, V.W.D., Cruz, C.D., Finger, F.L. 1999. Genetic inferences on yield and quality of tomato in a diallel. Pesquisa Agropecuária Brasileira 34:1407–1416.CrossRefGoogle Scholar
  3. Bauer, I., Mladenovic, D.S., Drinic, S., Ignjatovic, D. 2007. Assessing temporal changes in genetic diversity of maize hybrids using RAPD markers. Cereal Res. Commun. 35:1563–1571.CrossRefGoogle Scholar
  4. Brunson, A.M. 1937. Yearbook of Agriculture 1:395–404.Google Scholar
  5. Comstock, R.E., Robinson, H.F. 1948. The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 4:254–266.CrossRefGoogle Scholar
  6. Cruz, C.D., Regazzi, A.J., Carneiro, P.C.S. 2004. Biometric models applied to genetic breeding. Federal University of Viçosa, Viçosa, Brazil. pp. 281–314.Google Scholar
  7. Daros, M., Amaral Júnior, A.T., Pereira, M.G. 2002. Genetic gain for grain yield and popping expansion in full-sib recurrent selection in popcorn. Crop Breeding and Appl. Biotech. 2:339–344.CrossRefGoogle Scholar
  8. Daros, M., Amaral Júnior, A.T., Pereira, M.G., Santos, F.S., Gabriel, A.P.C., Scapim, C.A., Freitas Júnior, S.P., Silverio, L. 2004. Recurrent selection in inbred popcorn families. Scientia Agricola 61:609–614.CrossRefGoogle Scholar
  9. Dere, S., Yildirim, M.B. 2006. Inheritance of plant height, tiller number per plant, spike height and 1000-kernel weight in a 8×8 diallel cross population of bread wheat. Cereal Res. Commun. 34:965–972.CrossRefGoogle Scholar
  10. Dofing, S.M., D’Croz-Mason, N., Thomas-Compton, M.A. 1991. Inheritance of expansion volume and yield in two popcorn × dent corn crosses. Crop Sci. 331:715–718.CrossRefGoogle Scholar
  11. Faria, V.R., Viana, J.M.S., Sobreira, F.M., Costa e Silva, A. 2008. Reciprocal recurrent selection to obtain interpopulation hybrids of popcorn. Pesquisa Agropecuária Brasileira 43:1749–1755.CrossRefGoogle Scholar
  12. Freitas Júnior, S.P., Amaral Júnior, A.T., Pereira, M.G., Cruz, C.D., Scapim, C.A. 2006. Combining ability in popcorn by circulant diallel. Pesquisa Agropecuária Brasileira 4:1599–1607.CrossRefGoogle Scholar
  13. Freitas Júnior, S.P., Amaral Júnior, A.T., Rangel, R.M., Viana, A.P. 2009. Genetic gains in popcorn by full-sib recurrent selection. Crop Breeding and Appl. Biotech. 9:1–7.CrossRefGoogle Scholar
  14. Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing. Aust. J. Biol. Sci. 9:463–493.CrossRefGoogle Scholar
  15. Hallauer, A.R., Miranda Filho, J.B. 1995. Quantitative genetics in maize breeding. 2nd ed., Iowa State University Press, Ames, Iowa, USA, 468 pp.Google Scholar
  16. Hayman, B.I. 1954. The analysis of variance of diallel tables. Biometrics 10:235–244.CrossRefGoogle Scholar
  17. Larish, L.B., Brewbaker, J.L. 1999. Diallel analyses of temperate and tropical popcorn. Maydica 44:279–284.Google Scholar
  18. Melani, M.D., Carena, M.J. 2005. Alternative maize heterotic patterns for the northern Corn Belt. Crop Sci. 45:2186–2194.CrossRefGoogle Scholar
  19. Miranda, G.V., Souza, L.V., Galvão, J.C.C., Guimarães, L.J.M., Melo, A.V., Santos, I.C. 2008. Genetic variability and heterotic groups of Brazilian popcorn population. Euphytica 159:123–132.Google Scholar
  20. Nemoto, K., Ukai, Y., Tang, D.Q., Kasai, Y., Morita, M. 2004. Inheritance of early elongation ability in floating rice revealed by diallel and QTL analyses. Theor. Appl. Gen. 109:42–47.CrossRefGoogle Scholar
  21. Pereira, M.G., Amaral Júnior, A.T. 2001. Estimation of genetic components in popcorn based on the nested design. Crop Breeding and Appl. Biotech. 1:3–10.CrossRefGoogle Scholar
  22. Rangel, R.M., Amaral Júnior, A.T., Viana, A.P., Freitas Júnior, S.P., Pereira, M.G. 2007. Prediction of popcorn hybrid and composite means. Crop Breeding and Appl. Biotech. 7:287–295.CrossRefGoogle Scholar
  23. Rangel, R.M., Amaral Júnior, A.T., Scapim, C.A., Freitas Júnior, S.P., Pereira, M.G. 2008. Genetics and parameters in parents and hybrids of circulant diallel in popcorn. Genetics and Molecular Res. 7:1020–1030.CrossRefGoogle Scholar
  24. Robbins, Jr., W.A., Ashman, R.B. 1984. Parent offspring popping expansion correlations in progeny of dent × popcorn and corn × popcorn crosses. Crop Sci. 24:119–121.CrossRefGoogle Scholar
  25. Santos, F.S., Amaral Júnior, A.T., Freitas Júnior, S.P., Rangel, R.M., Scapim, C.A., Mora, F. 2008. Genetic gain prediction of the third recurrent selection cycle in a popcorn population. Acta Scientiarum Agronomy 30:651–655.CrossRefGoogle Scholar
  26. Silva, M.P., Amaral Júnior, A.T., Rodrigues, R., Pereira, M., Viana, A.P. 2004. Genetic control on morfoagronomic traits in snap bean. Brazilian Archives of Biology and Technology 47:855–862.CrossRefGoogle Scholar
  27. Vieira, R.A., Neto, I.L.S., Bignotto, L.S., Cruz, C.D., Amaral Júnior, A.T., Scapim, C.A. 2009. Heterotic parametrization for economically important traits in popcorn. Acta Scientiarum Agronomy 31:411–419.Google Scholar
  28. Vilela, F.O., Amaral Júnior, A.T., Pereira, M.G., Scapim, C.A., Viana, A.P., Freitas Júnior, S.P. 2008. Effect of recurrent selection on the genetic variability of the UNB-2U popcorn population using RAPD markers. Acta Scientiarum Agronomy 30:25–30.Google Scholar
  29. Warburton, M.L., Reif, J.C., Frisch, M., Bohan, M., Bedoya, C., Xia, X.C., Crossa, J., Franco, J., Hoisington, D., Pixley, K., Taba, S., Melchinger, A.E. 2008. Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci. 48:617–624.CrossRefGoogle Scholar
  30. Wardyn, B.M., Edwards, J.W., Lamkey, K.R. 2007. The genetic structure of a maize population: the role of dominance. Crop Sci. 47:467–474.CrossRefGoogle Scholar
  31. Ziegler, K.E., Ashman, B. 1994. Popcorn. In: Hallauer, A.R. (ed.), Specialty Corns. CRC Press, New York, USA, pp. 189–223.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • V. Q. R. da Silva
    • 1
  • A. T. Amaral Júnior
    • 1
    Email author
  • C. A. Scapim
    • 2
  • S. P. Freitas Júnior
    • 1
  • L. S. A. Gonçalves
    • 1
  1. 1.Laboratory of Genetic Breeding of Vegetable CropsDarcy Ribeiro Northern Fluminense State UniversityCampos dos GoytacazesBrazil
  2. 2.Department of AgronomyMaringá State UniversityMaringáBrazil

Personalised recommendations