Cereal Research Communications

, Volume 38, Issue 2, pp 266–271 | Cite as

Gene effects for spike length, spikelets per spike and spike density in Hordeum chilense

  • J. B. AlvarezEmail author
  • J. M. Gómez
  • A. Martín
  • L. M. Martín


Hordeum chilense Roem. et Schult. is a South American wild barley that occurs exclusively in Chile and Argentina, where it is a component of natural pastures. This species has been crossed with durum and bread wheats to obtain a new amphiploid, called tritordeum, which presents agronomic traits of a new crop. Two groups represented by H1 and H7 lines have shown differences for spike length and density, number of spikelets per spike and various other characters which are interesting for tritordeum improvement. This study was conducted to investigate inheritance of these three characters in a cross between H1 and H7 lines, including parents, F1 and F2 generations. The three characters studied fitted the additive model. The dominance effects were less strong than the additive effects, indicating partial dominance of positive sign for number of spikelets per spike; whereas spike length displayed small dominance effects of negative sign and the spike density showed intermediate inheritance, with the inheritance being almost exclusively additive.


additive effects broad-sense heritability dominance effects spike traits tritordeum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altinbas, M., Bilgen, G. 1996. A study on gene action for spike characters in two spring wheat crosses. Anadolu 6:84–99.Google Scholar
  2. Alvarez, J.B., Canalejo, A.L., Ballesteros, J., Rogers, W.J., Martín, L.M. 1993. Genealogical identification of hexaploid tritordeum by electrophoretic separation of endosperm storage proteins. Plant Breed. 111:166–169.CrossRefGoogle Scholar
  3. Alvarez, J.B., Martín, A., Martín, L.M. 2001. Variation in the high-molecular-weight glutenin subunits coded at the Glu-Hch1 locus in Hordeum chilense. Theor. Appl. Genet. 102:134–137.CrossRefGoogle Scholar
  4. Alvarez, J.B., Moral, A., Martín, L.M., Martín, A. 2004. Linkage relationships between prolamin genes located on chromosome 1Hch in Hordeum chilense. Theor. Appl. Genet. 108:891–895.CrossRefGoogle Scholar
  5. Alvarez, J.B., Broccoli, A., Martín, L.M. 2006. Variability and genetic diversity for gliadins in natural populations of Hordeum chilense. Genet. Resour. Crop Evol. 53:1419–1425.CrossRefGoogle Scholar
  6. Atienza, S.G., Giménez, M.J., Martín, A., Martín, L.M. 2000. Variability in monomeric prolamins in Hordeum chilense. Theor. Appl. Genet. 101:970–976.CrossRefGoogle Scholar
  7. Atienza, S.G., Alvarez, J.B., Villegas, A.M., Giménez, M.J., Ramírez, M.C., Martín, A., Martín, L.M. 2002. Variation for the low-molecular-weight glutenin subunits in a collection of Hordeum chilense. Euphytica 128:269–277.CrossRefGoogle Scholar
  8. Bakhsh, A., Hussain, A., Khan, A.S. 2003. Genetic studies of plant height, yield and its components in bread wheat. Sarhad J. Agric. 19:529–534.Google Scholar
  9. Ballesteros, J. 1993. Base genética del contenido en proteína en tritórdeo (Genetic basis of the protein content in tritordeum). Ph.D. thesis. Universidad de Córdoba, Spain.Google Scholar
  10. Cavalli, L.L. 1952. An analysis of linkage in quantitative inheritance. In: Reeve, E.C.R., Waddington, C.H. (eds), Quantitative Inheritance. Her Majesty’s Stationary Office, London, UK, pp. 135–144.Google Scholar
  11. Giménez, M.J. 1995. Variabilidad genética en Hordeum chilense (Genetic variability in Hordeum chilense). Ph.D. thesis. Universidad de Córdoba, Spain.Google Scholar
  12. Giménez, M.J., Cosio, F., Martínez, C., Silva, F., Zuleta, A., Martín, L.M. 1997. Collecting Hordeum chilense Roem. et Schult. germplasm in desert and steppe dominions of Chile. Plant Genetic Resources Newsletter 109:17–19.Google Scholar
  13. Iqbal, M., Alam, K., Chowdhry, M.A. 1991. Genetic analysis of plant height and the traits above flag leaf node in Bread wheat. Sarhad J. Agric. 7:131–134.Google Scholar
  14. Martín, A., Martínez, C., Rubiales, D., Ballesteros, J. 1996. Tritordeum: triticale’s new brother cereal. In: Güedes-Pinto, H., Darvey, N., Carnide, V.P. (eds), Triticale: Today and Tomorrow. Kluwer Academic Publishers, Dordrecht, NL, pp. 57–72.CrossRefGoogle Scholar
  15. Martín, A., Alvarez, J.B., Martín, L.M., Barro, F., Ballesteros, J. 1999. The development of tritordeum: A novel cereal for food processing. J. Cereal Sci. 30:85–95.CrossRefGoogle Scholar
  16. Martín, A., Martín, L.M., Cabrera, A., Ramírez, M.C., Giménez, M.J., Rubiales, D., Hernández, P., Ballesteros, J. 1998. The potential of Hordeum chilense in breeding Triticeae species. In: Jaradat, A.A. (ed.), Triticeae III. Science Publishers Inc., Enfield, UK, pp. 377–386.Google Scholar
  17. Nanda, G.S., Hazarika, G.N., Gill, K.S. 1981. Inheritance of heading date, plant height, ear length and spikelets per spike in an intervarietal cross of wheat. Theor. Appl. Genet. 60:167–171.CrossRefGoogle Scholar
  18. Pistón, F., Martín, A., Dorado, G., Barro, F. 2005. Cloning and molecular characterization of B-hordeins from Hordeum chilense (Roem. et Schult.). Theor. Appl. Genet. 111:551–560.CrossRefGoogle Scholar
  19. Tobes, N., Ballesteros, J., Martínez, C., Lovazzano, G., Contreras, D., Cosio, F., Gastó, J., Martín, L.M. 1995. Collection mission of H. chilense Roem. et Schult. in Chile and Argentina. Genet. Resour. Crop Evol. 42:211–216.CrossRefGoogle Scholar
  20. Vaz Patto, M.C., Aardse, A., Buntjer, J., Rubiales, D., Martín, A., Niks, R.E. 2001. Morphology and AFLP markers suggest three Hordeum chilense ecotypes that differ in avoidance to rust fungi. Can. J. Bot. 79:204–213.Google Scholar
  21. von Bothmer, R., Jacobsen, N., Baden, C., Jørgensen, R.B., Linde-Laursen, I. 1995. An ecogeografical study of the genus Hordeum. 2nd edition. Systematic and Ecogeografical Studies on Crop Genepools 7. International Plant Genetic Resources Institute, Rome, Italy.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

Authors and Affiliations

  • J. B. Alvarez
    • 1
    Email author
  • J. M. Gómez
    • 1
  • A. Martín
    • 2
  • L. M. Martín
    • 1
  1. 1.Departamento de Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Edificio Gregor Mendel, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
  2. 2.Departamento de Mejora Genética VegetalInstituto de Agricultura Sostenible, Consejo Superior de Investigaciones CientíficasCórdobaSpain

Personalised recommendations