Cereal Research Communications

, Volume 37, Issue 4, pp 531–540 | Cite as

A QTL analysis of aluminium tolerance in barley, using gene-based markers

  • S. Navakode
  • A. Weidner
  • R. K. Varshney
  • U. Lohwasser
  • U. Scholz
  • A. BörnerEmail author


Barley is more sensitive than the other major cereal crops to aluminium (Al) toxicity. Here, a doubled haploid mapping population was exploited to study the inheritance of Al tolerance in barley. Quantitative trait locus (QTL) mapping was based on a genetic map constructed with genic markers. Al tolerance QTL were identified on chromosomes 2H, 3H and 4H. A sequence homology search was used to derive the putative function of the genes linked to the QTL, in order to identify potential candidate genes for Al tolerance. Some of these candidates are implicated in stress/defence responses, in particular, stress signal transduction, transcription regulation factors and cell metabolism.


aluminium tolerance expressed sequence tags Hordeum vulgare L. putative function quantitative trait loci 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aniol, A., Gustafson, J.P. 1984. Chromosome location of genes controlling aluminium tolerance in wheat, rye and triticale. Can. J. Genet. Cytol. 26:701–705.CrossRefGoogle Scholar
  2. Bona, L., Wright, R.J., Baligar, V.C., Matuz, J. 1993. Screening wheat and other small grains for acid soil tolerance. Landscape and Urban Planning 27:2–4, 175–178.CrossRefGoogle Scholar
  3. Cai, S., Bai, G-H., Zhang, D. 2008. Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor. Appl. Genet. 117:49–56.CrossRefGoogle Scholar
  4. Collins, N.C., Shirley, N.J., Saeed, M., Pallotta, M., Gustafson, J.P. 2008. An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179:669–682.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Costa, J.M., Corey, A., Hayes, P.M., Jobet, C., Kleinhofs, A., Kopisch-Obusch, A., Kramer, S.F., Kudrna, D., Li, M., Riera-Lizarazu, O., Sato, K., Szucs, P., Toojinda, T., Vales, M.I., Wolfe, R.I. 2001. Molecular mapping of the Oregon Wolfe Barleys: A phenotypically polymorphic doubled-haploid population. Theor. Appl. Genet. 103:415–424.CrossRefGoogle Scholar
  6. Delhaize, E., Ryan, P.R. 1995. Aluminum toxicity and tolerance in plants. Plant Physiol. 107:315–321.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Echart, C.L., Fernandes Barbosa-Neto, J., Garvin, D.F., Cavalli-Molina, S. 2002. Aluminum tolerance in barley: Methods for screening and genetic analysis. Euphytica 126:309–313.CrossRefGoogle Scholar
  8. Fontecha, G., Silva-Navas, J., Benito, C., Mestres, M.A., Espino, F.J., Hernandez-Riquer, M.V., Gallego, F.J. 2007. Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locusfor aluminum tolerance in rye (Secale cereale L.). Theor. Appl. Genet. 114:249–260.CrossRefGoogle Scholar
  9. Furukawa, J., Yamaji, N., Wang, H., Mitani, N., Murata, Y., Sato, K., Katsuhara, M., Takeda, K., Ma, J.F. 2007. An aluminum-activated citrate transporter in barley. Plant and Cell Physiol. 48:1081–1091.CrossRefGoogle Scholar
  10. Gallego, F.J., Benito, C. 1997. Genetic control of aluminium tolerance in rye (Secale cereale L.). Theor. Appl. Genet. 95:393–399.CrossRefGoogle Scholar
  11. Gruber, B.D., Ryan, P.R., Richardson, A.E., Hebb, D.M., Raman, H., Zhou, M., Wang, J., Howitt, S.M., Delhaize, E. 2006. The identification and characterisation of ALMT1 homologs in the Triticeae. In: Proceedingsof 8th international congress of plant molecular biology. Adelaide, Australia, p. 185.Google Scholar
  12. Hede, A.R., Skovmand, B., Ribaut, J.M., Gonzalez-de-Leon, D., Stolen, O. 2002. Evaluation of aluminium tolerance in a spring rye collection by hydroponic screening. Plant Breed. 121:241–248.CrossRefGoogle Scholar
  13. Hoekenga, O.A., Maron, L.G., Pineros, M.A., Cancado, G.M.A., Shaff, J., Kobayashi, Y., Ryan, P.R., Dong, B., Delhaize, E., Sasaki, T., Matsumoto, H., Yamamoto, Y., Koyama, H., Kochian, L.V. 2006. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 103: 9738–9743.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ishikawa, S., Wagamatsu, T., Sasaki, R., Manu, P.O. 2000. Comparison of the amounts of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species. Soil Sci. Plant Nutr. 46:751–758.CrossRefGoogle Scholar
  15. Iuchi, S., Koyama, H., Iuchi, A., Kobayashi, Y., Kitabayashi, S., Kobayashi, Y., Ikka, T., Hirayama, T., Shinozaki, K., Kobayashi, M. 2007. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc. Natl. Acad. Sci. USA 104:9900–9905.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kochian, L.V., Pineros, M.A., Hoekenga, O.A. 2005. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil 274:175–195.CrossRefGoogle Scholar
  17. Lefebvre, S., Lawson, T., Zakhleniuk, O.V., Lloyd, J.C., Raines, C.A. 2005. Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol. 138:451–460.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ma, H-X., Bai, G-H., Lu, W-Z. 2006. Quantitative trait loci for aluminum resistance in wheat cultivar Chinese Spring. Plant and Soil 283:239–249.CrossRefGoogle Scholar
  19. Ma, J.F., Nagao, S., Sato, K., Ito, H., Furukawa, J., Tekeda, K. 2004. Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J. Exp. Bot. 55:401, 1335–1341.CrossRefGoogle Scholar
  20. Magalhaes, J.V., Liu, J., Guimaraes, C.T., Lana, U.G.P., Alves, V.M.C., Wang, Y.H., Schaffert, R.E., Hoekenga, O.A., Pineros, M.A., Shaff, J.E., Klein, P.E., Carneiro, N.P., Coelho, C.M., Trick, H.N., Kochian, L.V. 2007. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet. 39:1156–1161.CrossRefGoogle Scholar
  21. Maron, L.G., Kirst, M., Mao, C., Milner, M.J., Menossi, M., Kochian, L.V. 2008. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol. 179:116–128.CrossRefGoogle Scholar
  22. Minella, E., Sorrells, M.E. 1992. Aluminum tolerance in barley — genetic-relationships among genotypes of diverse origin. Crop Sci. 2:593–598.CrossRefGoogle Scholar
  23. Minella, E., Sorrells, M.E. 1997. Inheritance and chromosome location of Alp, a gene controlling aluminum tolerance in ‘Dayton’ barley. Plant Breed. 116:465–469.CrossRefGoogle Scholar
  24. Navakode, S., Weidner, A., Lohwasser, U., Röder, M.S., Börner, A. 2009. Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166:283–290.CrossRefGoogle Scholar
  25. Nawrot, M., Szarejko, I., Maluszynski, M. 2001. Barley mutants with increased tolerance to aluminium toxicity. Euphytica 120:345–356.CrossRefGoogle Scholar
  26. Nelson, J.C. 1997. QGENE: Software for marker-based genomic analysis and breeding. Mol. Breed. 3:239–245.CrossRefGoogle Scholar
  27. Nguyen, V.T., Nguyen, B.D., Sarkarung, S., Martinez, C., Paterson, A.H., Nguyen, H.T. 2002. Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol. Genet. Genomics 267:772–780.CrossRefGoogle Scholar
  28. Oram, R.N. 1983. Breeding barley tolerant to high soil acidity and waterlogging. In: Driscoll, C.J. (Ed.), Proc. Aust. Plant breed. Conf. Adelaide, South Australia, pp. 71–73.Google Scholar
  29. Peixoto, P.H.P., Cambrain, J., Anna, R.S., Mosquim, P.R., Moreira, M.A. 1999. Aluminium effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Br. J. Plant Physiol. 11:137–145.Google Scholar
  30. Raman, H., Moroni, S., Sato, K., Read, J., Scott, J. 2002. Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor. Appl. Genet. 105:458–464.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Raman, H., Wang, J.P., Read, B., Zhou, M.X., Vengatanagappa, S., Moroni, J.S., O’Bree, B., Mendham, N. 2005. Molecular mapping of resistance to aluminium toxicity in barley. In: Proceedings of Plant and Animal Genome XIII Conference, January 15–19, San Diego, p. 154.Google Scholar
  32. Read, B.J., Oram, R.N. 1995. Hordeum vulgare (Barley) cv. Brindabella. Aust. J. Exp. Agric. 35:425.CrossRefGoogle Scholar
  33. Reid, D.A. 1970. Genetic control of reaction to aluminum in winter barley. In: Proceedings of the 2nd International Barley Genetics Symposium, Pullman, pp. 409–413.Google Scholar
  34. Reid, D.A., Jones, G.D., Armiger, W.H., Foy, C.D., Koch, E.J., Starling, T.M. 1969. Differential aluminum tolerance of winter barley varieties and selections in associated greenhouse and field experiments. Agron. J. 161:218–222.CrossRefGoogle Scholar
  35. Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R., Gardner, R.C. 1998. Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol. 116:409–418.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ryan, P.R., Raman, H., Gupta, S., Horst, W.J., Delhaize, E. 2009. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol. 149:340–351.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P.R., Delhaize, E., Matsumoto, H. 2004. A wheat gene encoding an aluminum-activated malate transporter. Plant Journal 37:645–653.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sibov, S.T., Gaspar, M., Silva, M.J., Ottoboni, L.M.M., Arruda, P., Souza, A.P. 1999. Two genes control aluminum tolerance in maize: Genetic and molecular mapping analyses. Genome 42:475–482.CrossRefGoogle Scholar
  39. Stein, N., Prasad, M., Scholz, U., Thiel, T., Zhang, H.N., Wolf, M., Kota, R., Varshney, R.K., Perovic, D., Grosse, I., Graner, A. 2007. A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor. Appl. Genet. 114:823–839.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Torii, K.U. 2004. Leucine-rich repeat receptor kinases in plants: Structure, function, and signal transduction pathways. Int. Rev. Cytol. 234:1–46.CrossRefGoogle Scholar
  41. Von Uexkull, H.R., Mutert, E. 1995. Global extent, development and economic-impact of acid soils. Plant and Soil 171:1–15.CrossRefGoogle Scholar
  42. Wang, J.P., Raman, H., Read, B., Zhou, M.X., Mendham, N., Venkatanagappa, S. 2006. Validation of an Alt locus for aluminium tolerance scored with eriochrome cyanine R staining method in barley cultivar Honen(Hordeum vulgare L.). Aust. J. Agric. Res. 57:113–118.CrossRefGoogle Scholar
  43. Wang, J.P., Raman, H., Zhou, M.X., Ryan, P.R., Delhaize, E., Hebb, D.M., Coombes, N., Mendham, N. 2007. High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor. Appl. Genet. 115:265–276.CrossRefGoogle Scholar
  44. Wolfe, R.I., Franckowiak, J.D. 1991. Multiple dominant and recessive genetic marker stocks in spring barley. Barley Genet. Newsl. 20:117–121.Google Scholar
  45. Xu, S.L., Rahman, A., Baskin, T.I., Kieber, J.J. 2008. Two leucine-rich repeat receptor kinases mediate signalling linking cell wall biosynthesis and ACC Synthase in Arabidopsis. The Plant Cell 20:3065–3079.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zhou, L.L., Bai, G.H., Ma, H.X., Carver, B.F. 2007. Quantitative trait loci for aluminum resistance in wheat. Mol. Breed. 19:153–161.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • S. Navakode
    • 1
  • A. Weidner
    • 1
  • R. K. Varshney
    • 1
  • U. Lohwasser
    • 1
  • U. Scholz
    • 1
  • A. Börner
    • 1
    Email author
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations