Cereal Research Communications

, Volume 37, Issue 4, pp 489–498 | Cite as

Evaluation of genetic diversity among bread wheat varieties and landraces of Pakistan by SSR markers

  • N. IqbalEmail author
  • A. Tabasum
  • H. Sayed
  • A. Hameed


Genetic diversity of 48 Pakistani wheat varieties and 12 landraces was assessed, loss of genetic diversity in bread wheat during the change from traditional landraces (LVs) to modern breeding varieties was examined, and recent trends of national wheat breeding programmes were identified. A total of 29 SSR markers, representing at least one marker from each chromosome of wheat, were used to analyze the genetic diversity. A total of 80 alleles were generated by the 29 loci with an average of 2.76 alleles per marker. A significant loss of genetic diversity was observed from LVs to elite cultivated varieties. Average genetic similarity between landraces was 61% while varieties released after 1990 showed 73% similarity. Range of genetic distance observed between all possible pairs was from 1.41 to 4.90. It was also observed that most of the varieties released from one source showed comparatively lower diversity indicating the utilization of common elite breeding material or interbreeding of released varieties.


genetic diversity microsatellite markers SSR wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.A., Churchill, G.A., Autrique, J.E., Sorrells, M.E., Tanksley, S.D. 1993. Optimizing parental selection for genetic linkage maps. Genome 36:181–186.CrossRefGoogle Scholar
  2. Barrett, B.A., Kidwell, K.K. 1998. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci. 38:1261–1271.CrossRefGoogle Scholar
  3. Börner, A., Chebotar, S., Korzun, V. 2000. Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor. Appl. Genet. 100:494–497.CrossRefGoogle Scholar
  4. Burkhamer, R.L., Lanning, S.P., Martens, R.J., Martin, J.M., Talbert, L.E. 1998. Predicting progeny variance from parental divergence in hard red spring wheat. Crop Sci. 38:243–248.CrossRefGoogle Scholar
  5. Chen, H.B., Martin, J.M., Lavin, M., Talbert, L.E. 1994. Genetic diversity in hard red spring wheat based on sequence-tagged-site PCR markers. Crop Sci. 34:1628–1632.CrossRefGoogle Scholar
  6. Devos, K.M., Bryan, G.J., Collins, A.J., Gale, M.D. 1995. Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor. Appl. Genet. 90:247–252.CrossRefGoogle Scholar
  7. Huang, X. Q., Börner, A., Röder, M. S., Ganal, M. W. 2002. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 105:699–707.CrossRefGoogle Scholar
  8. Iqbal, N., Firdissa, E., Khlestkina, K., Weidner, A., Röder, M.S., Börner, A. 2007. The use of simple sequence repeat (SSR) markers to identify and map alien segments carrying genes for effective resistance to leaf rust in bread wheat. Plant Genet. Resour. 5:100–103.CrossRefGoogle Scholar
  9. Joshi, C.P., Nguyen, H.T. 1993. RAPD (random amplied polymorphic DNA) analysis based intervarietal genetic relationships among hexaploid wheats. Plant Sci. 93:95–103.CrossRefGoogle Scholar
  10. Kim, H.S., Ward, R.W. 2000. Patterns of RFLP-based genetic diversity in germplasm pools of common wheat with different geographical or breeding program origins. Euphytica 115:197–208.CrossRefGoogle Scholar
  11. Landjeva, S., Korzun V., Ganeva, G. 2006. Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925–2003 using microsatellites. Genet. Resour. Crop Evol. 53:1605–1614.CrossRefGoogle Scholar
  12. Leonova, I., Börner, A., Budashkina, E., Unger, N.O., Röder, M., Salina, E. 2004. Identification of microsatellite markers for a leaf rust resistance gene introgressed into common wheat from Triticum timopheevii. Plant Breeding 123:93–95.CrossRefGoogle Scholar
  13. Masmoudi, K., Rebai, A., Ellouz, R. 2006. AFLP and SSR fingerprinting to evaluate genetic diversity among bread wheat cultivars in Tunisia. Cereal Res. Commun. 34:871–878.CrossRefGoogle Scholar
  14. Nagaoka, T., Ogihara, Y. 1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94:597–602.CrossRefGoogle Scholar
  15. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70:3321–3323.CrossRefGoogle Scholar
  16. Niwa, K., Suzuki, H., Tominaga, T., Nasim, S., Anwar, R., Ogawa, M., Furuta, Y. 2008. Evaluation of genetic variation in high molecular weight glutenin subunits of seed storage protein using landraces of common wheat from Pakistan. Cereal Res. Commun. 36:327–332.CrossRefGoogle Scholar
  17. Plaschke, J., Ganal, M.W., Röder, M.S. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 91:1001–1007.CrossRefGoogle Scholar
  18. Prasad, M., Varshney, R.K., Roy, J.K., Balyan, H.S., Gupta, P.K. 2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor. Appl. Genet. 100:584–592.Google Scholar
  19. Röder, M.S., Korzun, V., Gill, B.S., Ganal, M.W. 1998a. The physical mapping of microsatellite markers in wheat. Genome 41:278–283.CrossRefGoogle Scholar
  20. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998b. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  21. Röder, M.S., Plaschke, J., Konig, S.U., Börner, A., Sorrels, M.E., Tanksley, S.D., Ganal, M.W. 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Mol. Gen. Genet. 246:327–333.CrossRefGoogle Scholar
  22. Röder, M.S., Wendehake, K., Korzun, V., Bredemeijer, G., Laborie, D., Bertrand, L., Isaac, P., Rendell, S., Jackson, J., Cooke, R.J., Vosmann, B., Ganal, M.W. 2002. Construction and analysis of a microsatellite-based database of European wheat cultivars. Theor. Appl. Genet. 106:67–73.CrossRefGoogle Scholar
  23. Saghai Maroof, M.A., Biyashev, R.M., Yang, G.P., Zhang, Q., Allard, R.W. 1994 Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. USA 91:5466–5470.CrossRefGoogle Scholar
  24. Siedler, H., Messmer, M.M., Schachermayr, G.M., Winzeler, H., Winzeler, M., Keller, B. 1994. Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor. Appl. Genet. 88:994–1003.CrossRefGoogle Scholar
  25. Stachel, M., Lelley, T., Grausgruber, H., Vollmann, T. 2000. Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor. Appl. Genet. 100:242–248.CrossRefGoogle Scholar
  26. Tautz, D., Renz, M. 1984. Simple sequence are ubiquitous repetitive components of eukaryotic genomes. Nucl. Acid Res. 12:4127–4138.CrossRefGoogle Scholar
  27. Wu, K.S., Tanksley, S.D. 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol. Gen. Genet. 241:225–235.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  1. 1.Marker Assisted Breeding GroupNuclear Institute for Agriculture and Biology (NIAB)FaisalabadPakistan

Personalised recommendations