Advertisement

Cereal Research Communications

, Volume 37, Issue 4, pp 479–488 | Cite as

QTL analysis of forage quality traits in barley (Hordeum vulgare L.)

  • B. A. Siahsar
  • S. A. Peighambari
  • A. R. Taleii
  • M. R. Naghavi
  • A. Nabipour
  • A. SarrafiEmail author
Genetics

Abstract

Despite the importance of barley as an animal feed, its forage quality has usually been neglected in breeding programs. In order to map the genomic regions, which modify barley forage quality, a population of 72 F1-derived doubled haploid lines (DH) from the cross “Steptoe/Morex” and their two parents were sown in Karaj and Zabol provinces of Iran, in each under a randomized complete block arrangement with two replications. Forage samples were oven-dried and ground and dry matter digestibility (DMD), acid detergent fiber (ADF), neutral detergent fiber (NDF), acid detergent lignin (ADL), crude fiber (CF), crude protein (CP), water-soluble carbohydrates and ash content were measured by NIRS. Analysis of variance showed that genotype, environment and genotype-environment interaction have significant effects on almost all studied traits. Several QTLs were resolved for each studied trait in both environments. Highest LOD scores were obtained for CF, ADF and DMD on chromosome 2H and for ash and CP on chromosomes 3H and 5H, respectively. QTLs for NDF were present on all chromosomes except 4H and 7H. QTL × environment interaction and the specificity of the QTLs are discussed.

Keywords

QTL barley forage quality doubled haploids stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Haleem, H., Giroux, M., Talbert, H., Bowman, J., Kanazin, V., Blake, T. 2004. Identification of QTLs controlling the feed quality of barley. Plant & Animal Genome XII Conf., Jan. 10–14, 2004, San Diego, CA. p. 468.Google Scholar
  2. Ayoub, M., Armstrong, E., Bridger, G., Fortin, M.G., Mather, D.E. 2003. Marker-based selection in barley for a QTL region affecting alpha amylase activity of malt. Crop Sci. 43:556–561.CrossRefGoogle Scholar
  3. Beecher, B., Smidansky, E.D., See, D., Blake, T.K., Giroux, M.J. 2001. Mapping and sequence analysis of barley hordoindolines. Theor. Appl. Genet. 102:833–840.CrossRefGoogle Scholar
  4. Borem, A., Mather, D.E., Rosmusson, D.C., Fulcher, R.G., Hayes, P.M. 1999. Mapping quantitative trait loci for starch granule traits in barley. J. Cereal Sci. 29:153–160.CrossRefGoogle Scholar
  5. Bregitzer, P., Campbell, R.D. 2001. Genetic markers associated with green and albino plant regeneration from embryogenic barley callus. Crop Sci. 41:173–179.CrossRefGoogle Scholar
  6. Cardinal, A.J., Lee, M., Moore, K.J. 2003. Genetic mapping and analysis of qualitative trait loci affecting fiber and lignin content in maize. Theor. Appl. Genet. 106:866–874.CrossRefGoogle Scholar
  7. Casler, M.D. 2001. Breeding forage crop for increased nutritive value. Adv. Agron. 71:51–107.CrossRefGoogle Scholar
  8. Chen, F., Hayes, P.M. 1989. A comparison of Hordeum bulbosum -mediated haploid production efficiency in barley using in-vitro floret and tiller culture. Theor. Appl. Genet. 77:701–704.CrossRefGoogle Scholar
  9. Chen, F., Prehn, D., Hayes, P.M., Mulrooney, D., Corey, A., Vivar, H. 1994. Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. horde.). Theor. Appl. Genet. 88:215–219.CrossRefGoogle Scholar
  10. Churchill, G.A., Doerge, R.W. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138:963–971.PubMedPubMedCentralGoogle Scholar
  11. Cogan, N.O.I., Smith, K.F., Yamada, T., Francki, M.G., Vecchies, A.C., Jones, E.S., Spangenberg, G.C., Forster, J.W. 2005. QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor. Appl. Genet. 110:364–380.CrossRefGoogle Scholar
  12. Coleman, S.E., Moore, J.E. 2003. Feed quality and animal performance. Field Crops Res. 84:17–29.CrossRefGoogle Scholar
  13. DeBoever, J.L., Cottyn, F.X., Wainman, F.W., Vanacker, J.M. 1986. The use of an enzymatic technique to predict digestibility, metabolisable and net energy of compound feedstuffs for ruminants. Anim. Feed Sci. Technol. 14:203–214.CrossRefGoogle Scholar
  14. Han, F., Ullrich, S.E., Kleinhofs, A., Jones, B.L., Hayes, P.M., Wesenberg, D.M. 1997. Fine structure mapping of the barley chromosome 1 centromere region containing malt quality QTL. Theor. Appl. Genet. 95: 903–910.CrossRefGoogle Scholar
  15. Han, F., Ullrich, S.E., Romagosa, I., Clancy, J.A., Froseth, J.A., Wesenberg, D.M. 2003. Quantitative genetic analysis of acid detergent fiber content in barley grain. J. Cereal Sci. 38:167–172.CrossRefGoogle Scholar
  16. Hayes, P.M., Liu, B.H., Knapp, S.J., Chen, F., Jones, B., Blake, T., Franckowiak, J., Rasmmusson, D., Sorrells, M., Ullrich, S.E., Wesenberg, D., Kleinhofs, A. 1993. Quantitative trait locus effects and environmental interaction in a Sample of North American barley germplasm. Theor. Appl. Genet. 87:392–401.CrossRefGoogle Scholar
  17. Jafari, A., Connolly, V., Frolich, A., Walsh, E.K. 2003. A note on estimation of quality in perennial ryegrass by near infrared spectroscopy. Irish J. Agric. Food Res. 42:293–299.Google Scholar
  18. Jansen, R.C., Stam, P. 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 138:1447–1455.Google Scholar
  19. Jung, H.J.G. 1997. Analysis of forage fiber and cell walls in ruminant nutrition. J. Nutr. 127:810S–813S.CrossRefGoogle Scholar
  20. Kleinhofs, A., Kilian, A., Saghai Maroof, M.A., Biyashev, R.M., Hayes, P., Chen, F.Q., Lapitan, N., Fenwick, A., Blake, T.K., Kanazin, V., Ananiev, E., Dahleen, L., Kudrna, D., Bollinger, J., Knapp, S.J., Liu, B., Sorrells, M., Heun, M., Franckowiak, J.D., Hoffman, D., Skaden, R., Steffeson, B.J. 1993. A molecular, isozyme and morphological map of the barley (Hordeum vulgare L.) genome. Theor. Appl. Genet. 86:705–712.CrossRefGoogle Scholar
  21. Lebreton, C.M., Visscher, P.M., Haley, C.S., Semikhodskii, A., Quarrie, S.A. 1998. A nonparametric bootstrap method for testing close linkage vs. pleiotropy on coincident quantitative trait loci. Genetics 150:931–943.PubMedPubMedCentralGoogle Scholar
  22. Lübberstedt, T., Melchinger, E.A., Klein, D., Degenhardt, H., Paul, C. 1997. QTL mapping in test crosses of flint lines of maize. II. Comparison of different testers for forage quality traits. Crop Sci. 37:1913–1922.CrossRefGoogle Scholar
  23. Marquez-Cedillo, L.A., Hayes, P.M., Jones, B.L., Kleinhofs, A., Legge, W.G., Rossnagel, B.G., Sato, K., Ullrich, S.E., Wesenberg, D.M. 2000. QTL analysis of malting quality in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor. Appl. Genet. 101:173–184.CrossRefGoogle Scholar
  24. Mather, D.E., Tinker, N.A., LaBerge, D.E., Edney, M., Jones, B.L., Rossnagle, B.G., Legge, W.G., Briggs, K.G., Irvine, R.B., Falk, D.E., Kasha, K.J. 1997. Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci. 37:544–554.CrossRefGoogle Scholar
  25. Mentink, R.L., Hoffman, P.C., Bauman, L.M. 2006. Utility of near-infrared reflectance spectroscopy to predict nutrient composition and in vitro digestibility of total mixed rations. J. Dairy Sci. 89:2320–2326.CrossRefGoogle Scholar
  26. Mickelson, S., See, D., Meyer, F.D., Garner, J.P., Foster, C.R., Blake, T.K., Fischer, A.M. 2003. Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. J. Exp. Bot. 54:801–812.CrossRefGoogle Scholar
  27. Molina-Cano, J.L., Francwsch, M., Perez-Vendrell, A.M., Ramo, T., Voltas, J., Brufau, J. 1997. Genetic and environmental variation in malting and feed quality of barley. J. Cereal Sci. 25:37–47.CrossRefGoogle Scholar
  28. Mould, F.L. 2003. Predicting feed quality-chemical analysis and in vitro evaluation. Field Crops Res. 84:31–44.CrossRefGoogle Scholar
  29. Oziel, A., Hayes, P.M., Chen, F.Q., Jones, B. 1996. Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breed. 115:43–51.CrossRefGoogle Scholar
  30. Peighambari, S.A., Yazdi Samadi, B., Nabipour, A., Charmet, G., Sarrafi, A. 2005. QTL analysis for agronomic traits in a barley doubled haploids population grown in Iran. Plant Sci. 169:1008–1013.CrossRefGoogle Scholar
  31. Roberts, C.A., Workman, J., Reeves, J.B. 2004. Near-infrared spectroscopy in agriculture. ASA-CSSA-SSSA, Inc., Madison WI.Google Scholar
  32. SAS Institute. 1992. SAS State user’s guide 9.1: Statistics. SAS Inst., Cary, NC.Google Scholar
  33. Smith, K.F., Reed, M., Foot, J.Z. 1997. An assessment of the relative importance of specific traits for the genetic improvement of nutritive value in dairy pasture. Grass Forage Sci. 52:167–175.CrossRefGoogle Scholar
  34. Steffenson, B.J., Hayes, P.M., Kleinhofs, A. 1996. Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. sp. teres) and spot blotch (Cochliobolus sativus) in barley. Theor. Appl. Genet. 92:552–558.CrossRefGoogle Scholar
  35. Tessema, Z., Baars, R.M.T. 2004. Chemical composition, in vitro dry matter digestibility and ruminal degradation of Napier grass (Pennisetum purpureum (L.) Schumach.) mixed with different levels of Sesbania sesban (L.) Merr. Anim. Feed Sci. Technol. 117:29–41.CrossRefGoogle Scholar
  36. Thomas, W.T.B., Baird, E., Fuller, J.D., Lawrence, P., Young, G.R., Russell, J., Ramsay, L., Waugh, R., Powell, W. 1998. Identification of a QTL decreasing yield in barley linked to Mlo powdery mildew resistance. Mol. Breed. 4:381–393.CrossRefGoogle Scholar
  37. Ullrich, S.E., Han, F., Froseth, J.A., Jones, B.L., Newman, C.W., Wesenberg, D.M. 1996. Mapping of loci that affect carbohydrate content in barley grain. In: Slinkard, A., Scoles, G., Rossnagel, B. (eds), Proceedings of the V Int. Oat Conf. & VII Int. Barley Genet. Symp. Poster Ses. 1:141–143. Univ. of Saskatchewan Ext. Press, Saskatoon, Canada.Google Scholar
  38. Wang, S., Basten, C.J., Zeng, Z.B. 2007. Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.Google Scholar
  39. Zeng, Z.B. 1994. Precision mapping of quantitative trait loci. Genetics 136:1457–1468.PubMedPubMedCentralGoogle Scholar
  40. Zhu, H., Briceno, G., Dovel, R., Hayes, P.M., Liu, B.H., Liu, C.T., Ullrich, S.E. 1999. Molecular breeding for grain yield in barley: An evaluation of QTL effects in a spring barley cross. Theor. Appl. Genet. 98:772–779.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • B. A. Siahsar
    • 1
  • S. A. Peighambari
    • 2
  • A. R. Taleii
    • 2
  • M. R. Naghavi
    • 2
  • A. Nabipour
    • 3
  • A. Sarrafi
    • 4
    Email author
  1. 1.Department of Agronomy and Plant Breeding, Faculty of AgricultureUniversity of ZabolZabolIran
  2. 2.Department of Agronomy and Plant Breeding, Faculty of Agronomy and Animal Science, Pardis of Agriculture and Natural ResourcesUniversity of TehranKarajIran
  3. 3.Seed and Plant Improvement InstituteKarajIran
  4. 4.Department of Biotechnology and Plant BreedingSP2-IFR 40-ENSAT-INPCastanetFrance

Personalised recommendations