Advertisement

Cereal Research Communications

, Volume 37, Issue 3, pp 391–398 | Cite as

Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes

  • E. K. KhlestkinaEmail author
  • T. A. Pshenichnikova
  • M. S. Röder
  • A. Börner
Genetics

Abstract

Two bread wheat crosses were used to genetically map the genes determining anthocyanin pigmentation of the anther (Pan-D1), culm (Pc-B1 and Pc-D1), leaf sheath (Pls-B1), and leaf blade (Plb-B1, Plb-D1). The genes cluster with Rc-1 (red coleoptile) on chromosome arms 7BS and 7DS. A germplasm panel of 37 wheat cultivars and introgression lines was tested for the presence of anthocyanin pigmentation on various plant organs, and significant correlations were established between pigmentation of the coleoptile and culm, coleoptile and leaf blade, coleoptile and anther, and anther and leaf blade.

Keywords

wheat homoeoloci microsatellite mapping anthocyanin pigmentation purple culm purple anthers purple leaf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adonina, I.G., Salina, E.A., Efremova, T.T., Pshenichnikova, T.A. 2004. The study of introgressive lines of Triticum aestivum × Aegilops speltoides by in situ and SSR analyses. Plant Breeding 123:220–224.CrossRefGoogle Scholar
  2. Blanco, A., Bellomo, M.P., Cenci, A., De Giovanni, C., D’Ovidio, R., Iacono, E., Laddomada, B., Pagnotta, M.A., Porceddu, E., Sciancalepore, A., Simeone, R., Tanzarella, O.A. 1998. A genetic linkage map of durum wheat. Theor. Appl. Genet. 97:721–728.CrossRefGoogle Scholar
  3. Chao, S., Sharp, P.J., Worland, A.J., Warham, E.J., Koebner, R.M.D., Gale, M.D. 1989. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet. 78:495–504.CrossRefGoogle Scholar
  4. Devos, K.M., Chao, S., Li, Q.Y., Simonetti, M.C., Gale, M.D. 1994. Relationship between chromosome 9 of maize and wheat homeologous group 7 chromosomes. Genetics 138:1287–1292.PubMedPubMedCentralGoogle Scholar
  5. Dobrovolskaya, O.B., Arbuzova, V.S., Lohwasser, U., Röder, M.S., Börner, A. 2006. Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364.CrossRefGoogle Scholar
  6. Ganal, M.W., Röder, M.S. 2007. Microsatellite and SNP markers in wheat breeding. In: Varshney, R.K., Tuberosa, R. (eds), Genomics Assisted Crop Improvement. Springer-Verlag, Berlin, pp. 1–24.Google Scholar
  7. Khlestkina, E.K., Pestsova, E.G., Röder, M.S., Börner, A. 2002a. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor. Appl. Genet. 104:632–637.CrossRefGoogle Scholar
  8. Khlestkina, E.K., Pestsova, E.G., Salina, E.A., Röder, M.S., Arbuzova, V.S., Koval, S.F., Börner, A. 2002b. Molecular mapping and tagging of wheat genes using RAPD, STS and SSR markers. Cell Mol. Biol. Letters 7:795–802.Google Scholar
  9. Khlestkina, E.K., Röder, M.S., Efremova, T.T., Börner, A., Shumny, V.K. 2004. The genetic diversity of old and modern Siberian varieties of common spring wheat determined by microsatellite markers. Plant Breed. 123:122–127.CrossRefGoogle Scholar
  10. Khlestkina, E.K., Pshenichnikova, T.A., Röder, M.S., Arbuzova, V.S., Salina, E.A., Börner, A. 2006. Comparative mapping of genes for glume colouration and pubescence in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 113:801–807.CrossRefGoogle Scholar
  11. Khlestkina, E.K., Röder, M.S., Unger, O., Meinel, A., Börner, A. 2007. More precise map position and origin of a durable non-specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Euphytica 153:1–10.CrossRefGoogle Scholar
  12. Khlestkina, E.K., Röder, M.S., Salina, E.A. 2008. Relationship between homoeologous regulatory and structural genes in allopolyploid genome — a case study in bread wheat. BMC Plant Biol. 8:88.CrossRefGoogle Scholar
  13. Kosambi, D.D. 1944. The estimation of map distances from recombination values. Ann. Eugenet. 12:172–175.CrossRefGoogle Scholar
  14. Kuspira, J., Unrau, J. 1958. Determination of the number and dominance relationships of genes on substituted chromosomes in common wheat Triticum aestivum L. Can. J. Plant Sci. 38:119–205.CrossRefGoogle Scholar
  15. Laikova, L.I., Arbuzova, V.S., Efremova, T.T., Popova, O.M. 2005. Genetic analysis of anthocyanin of the anthers and culm pigmentation in common wheat. Rus. J. Genet. 41:1428–1433.CrossRefGoogle Scholar
  16. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, I. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.CrossRefGoogle Scholar
  17. Law, C.N., Wolfe, M.C. 1966. Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can. J. Genet. Cytol. 8:462–470.CrossRefGoogle Scholar
  18. Li, W.L., Faris, J.D., Chittoor, J.M., Leach, J.E., Hulbert, S.H., Liu, D.J., Chen, P.D., Gill, B.S. 1999. Genomic mapping of defense response genes in wheat. Theor. Appl. Genet. 98:226–233.CrossRefGoogle Scholar
  19. Lohwasser, U., Röder, M.S., Börner, A. 2004. QTL mapping of vegetative characters in wheat (Triticum aestivum L.). In: Gen. Var. Plant Breed., Proc. 17th EUCARPIA Gen. Congr., Tulln, Austria, 8–11 September, 2004, pp. 195–198.Google Scholar
  20. Maystrenko, O.I. 1992. The use of cytogenetic methods in ontogenesis study of common wheat. In: Ontogenetics of Higher Plants. Shtiintsa, Kishinev, pp. 98–114.Google Scholar
  21. McIntosh, R.A., Yamazak, Y., Devos, K.M., Dubcovsky, J., Rogers, J., Appels, R. 2003. Catalogue of Gene Symbols for Wheat. [online]. Available from: URL: http://www.grs.nig.ac.jp/wheat/komugi/genes
  22. Nelson, J.C., Sorrels, M.E., Van Deynze, A.E., Lu, Y.H., Atkinson, M., Bernard, M., Leroy, P., Faris, J.D., Anderson, J.A. 1995. Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731.PubMedPubMedCentralGoogle Scholar
  23. Paz-Ares, J., Ghosal, D., Wienand, U., Peterson, P.A., Saedler, H. 1987. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 6:3553–3558.CrossRefGoogle Scholar
  24. Pestsova, E.G., Röder, M.S., Börner, A. 2006. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor. Appl. Genet. 112:634–647.CrossRefGoogle Scholar
  25. Salina, E., Börner, A., Leonova, I., Korzun, V., Laikova, L., Maystrenko, O., Röder, M.S. 2000. Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor. Appl. Genet. 100:686–689.CrossRefGoogle Scholar
  26. Salina, E., Dobrovolskaya, O., Efremova, T., Leonova, I., Röder, M.S. 2003. Microsatellite monitoring of recombination around the Vrn-B1 locus of wheat during early backcross breeding. Plant Breed. 122:116–119.CrossRefGoogle Scholar
  27. Wang, H.J., Huang, X.Q., Röder, M.S., Börner, A. 2002. Molecular mapping of genes determining long glumes in the genus Triticum. Euphytica 123:287–293.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • E. K. Khlestkina
    • 1
    Email author
  • T. A. Pshenichnikova
    • 1
  • M. S. Röder
    • 2
  • A. Börner
    • 2
  1. 1.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations