Genomic distribution of a long terminal repeat (LTR) Sabrina-like retrotransposon in Triticeae species

Abstract

Knowledge of the chromosomal distribution of long terminal repeats (LTR) is important for understanding plant chromosome structure, genomic organization and evolution, as well as providing chromosomal landmarks that are useful for chromosome engineering. The aim of this study is to investigate the genomic distribution of Sabrina-like LTR pDbH12, which was first isolated from Dasypyrum breviaristatum (Vb genome), on Triticeae species in relation to the genomic evolution and chromosome identification. Fluorescence in situ hybridization (FISH) analysis showed that pDbH12 is present on Dasypyrum (V genome) and Hordeum (H genome) species with the hybridized signals covering the entire chromosomes. However, clone pDbH12 did not hybridize to the genomes of Secale, Triticum, Lophopyrum, Pseduoroengeria, Aegilops, Agropyron desertorum and Elymus. Thinopyrum intermedium displayed fourteen chromosomes that hybridized with pDbH12. Sequential FISH identified these chromosomes as belonging to the Js genome. Results from sequence characterized amplified region (SCAR) marker and dot blot both support the FISH results, and the integrative results suggest that amplification of Sabrina-like LTR retrotransposons is an important factor which involved in the speciation process. Clone pDbH12 could serve as a cytogenetic marker for tracing chromatin from V or Vb, H and Js genomes in wheat-alien introgression lines.

References

  1. Belyayev, A., Raskina, O., Nevo, E. 2001. Chromosomal distribution of reverse transcriptase-containing retroelements in two Triticeae species. Chromosome Res. 9:129–136.

    CAS  Article  Google Scholar 

  2. Búdvarsdóttir, S.K., Anamthawat-Jónsson, K. 2003. Isolation, characterization, and analysis of Leymus -specific DNA sequences. Genome 46:673–682.

    Article  Google Scholar 

  3. Boeke, J.D., Garfinkel, D.J., Styles, C.A., Fink, G.R. 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500.

    CAS  Article  Google Scholar 

  4. Brosius, J. 1991. Retroposons — seeds of evolution. Science 251:753.

    CAS  Article  Google Scholar 

  5. Chen, Q., Conner, R.L., Laroche, A., Thomas, J.B. 1998. Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization. Genome 141:580–586.

    Article  Google Scholar 

  6. Flavell, R.B. 1986. Repetitive DNA and chromosome evolution in plants. Philos. Trans. R. Soc. B Biol. Sci. 312:227–242.

    CAS  Article  Google Scholar 

  7. Francki, M.G. 2001. Identification of Bilby, a diverged centromeric Ty1- copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44:266–274.

    CAS  Article  Google Scholar 

  8. Gribbon, B.M., Pearce, S.R., Kalendar, R., Schulman, A.H., Paulin, L., Jack, P.L., Kumar, A., Flavell, A.J. 1999. Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol. Gen. Genet. 261:883–891.

    CAS  Article  Google Scholar 

  9. Hansen, C.N., Heslop-Harrison, J.S. 2004. Sequences and phylogenies of plant pararetroviruses, viruses and transposable elements. Adv. Bot. Res. 41:165–193.

    CAS  Article  Google Scholar 

  10. Heslop-Harrison, J.S. 2000. Comparative genome organization in plants: From sequence and markers to chromatin and chromosomes. Plant Cell 12:617–636.

    CAS  Article  Google Scholar 

  11. Heslop-Harrison, J.S., Brandes, A., Taketa, S., Schmidt, T., Vershinin, A.V., Alkhimova, E.G., Kamm, A., Doudrick, R.L., Schwarzacher, T., Katsiotis, A., Kubis, S., Kumar, A., Pearce, S.R., Flavell, A. 1997. The chromosomal distribution of Ty1-copia group retrotransposable elements in higher plants and their implication for genome evolution. Genetica 100:197–204.

    CAS  Article  Google Scholar 

  12. Kellogg, E.A., Appels, R., Mason-Gamer, R.J. 1996. When genes tell different stories: The diploid genera of Triticeae (Gramineae). Syst. Bot. 21:321–347.

    Article  Google Scholar 

  13. Kishii, M., Wang, R.R.-C., Tsujimoto, H. 2005. GISH analysis revealed new aspect of genomic constitution of Thinopyrum intermedium. In: Proceedings of the 5 th International Triticeae Symposium, Prague, Czech Republic, 6–10 June 2005. Czech J. Genet. Plant Breed. 41:92–95.

    Article  Google Scholar 

  14. Kong, X.Y., Gu, Y.Q., You, F.M., Dubcovsky, J., Anderson, O.D. 2004. Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Plant Mol. Biol. 54:55–69.

    CAS  Article  Google Scholar 

  15. Kumar, A., Bennetzen, J.L. 1999. Plant retrotransposons. Annu. Rev. Genet. 33:479–532.

    CAS  Article  Google Scholar 

  16. Kunze, R., Saedler, H., Lonnig, W. 1997. Plant transposable elements. Adv. Bot. Res. 27:332–470.

    Google Scholar 

  17. Li, W.L., Zhang, P., Fellers, J.P., Friebe, B., Gill, B.S. 2004. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J. 40:500–511.

    CAS  Article  Google Scholar 

  18. Liu, C., Li, G.R., Yang, Z.J., Feng, J., Zhou, J.P., Ren, Z.L. 2006a. Isolation and application of specificDNAsegments of rye genome. Acta Bot. Boreal.-Occident. Sin. 26:2434–2438.

    CAS  Google Scholar 

  19. Liu, C., Yang, Z.J., Feng, J., Zhou, J.P., Ren, Z.L. 2006b. Isolation, mapping and application of a LTR fragment for Dasypyrum genome. Acta Agron. Sin. 32:1642–1648.

    Google Scholar 

  20. Mason-Gamer, R.J. 2001. Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based on granule-bound starch synthase gene sequences. Syst. Bot. 26:757–768.

    Google Scholar 

  21. Mason-Gamer, R.J. 2004. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Syst. Biol. 53:25–37.

    Article  Google Scholar 

  22. Megan Helfgott, D., Mason-Gamer, R.J. 2004. The evolution of North American Elymus (Poaceae: Triticeae) allotetraploids: evidence from phosphoenolpyruvate carboxylase gene sequences. Syst. Bot. 29:850–861.

    Article  Google Scholar 

  23. Mukai, Y., Nakahara, Y., Yamamoto, M. 1993. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494.

    CAS  Article  Google Scholar 

  24. Petersen, G., Seberg, O. 1997. Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. Mol. Phylogenet. Evol. 7:214–230.

    Article  Google Scholar 

  25. Ramakrishna, W., Dubcovsky, J., Park, Y., Busso, C., Emberton, J., SanMiguel, P., Bennetzen, J.L. 2002. Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162:1389–1400.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. SanMiguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D., Melake Berhan, A., Springe, P.S., Edwards, K.J., Avramova, Z., Bennetzen, J.L. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768.

    CAS  Article  Google Scholar 

  27. Shirasu, K., Schulman, A. H., Lahaye, T., Schulze-Lefert, P. 2000. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10:908–915.

    CAS  Article  Google Scholar 

  28. Vicient, C.M., Suoniemi, A., Anamthawat-Jónsson, K., Tanskanen, J., Beharav, A., Nevo, E., Schulman, A.H. 1999. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784.

    CAS  Article  Google Scholar 

  29. Wei, F.S., Wing, R.A., Wise, R.P. 2002. Genome dynamics and evolution of the Mla (Powdery Mildew) resistance locus in barley. Plant Cell 14:1903–1917.

    CAS  Article  Google Scholar 

  30. Yang, Z.J., Feng, J., Zhou, J.P., Liu, C., Ren, Z.L. 2005. Identification of Dasypyrum breviaristatum chromatin in wheat background by in situ hybridization. Southwest China J. Agricult. Sci. 18:608–611.

    Google Scholar 

  31. Yang, Z.J., Liu, C., Feng, J., Li, G.R., Zhou, J.P., Deng, K.J., Ren, Z.L. 2006. Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas 143:47–54.

    Article  Google Scholar 

  32. Yu, D.R., Ren, Z.L., Zhang, H.Y., Zhang, Q.J. 2000. A highly efficient technique for the detection of alien chromatin in wheat — Dot blot. J. Sichuan Univ. (Nat. Sci. Edition) S1:91–96.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Z. J. Yang or Z. L. Ren.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Liu, C., Yang, Z.J., Jia, J.Q. et al. Genomic distribution of a long terminal repeat (LTR) Sabrina-like retrotransposon in Triticeae species. CEREAL RESEARCH COMMUNICATIONS 37, 363–372 (2009). https://doi.org/10.1556/CRC.37.2009.3.5

Download citation

Keywords

  • Sabrina-like LTR
  • Dasypyrum
  • Thinopyrum
  • dot blot
  • in situ hybridization