Cereal Research Communications

, Volume 37, Issue 3, pp 363–372 | Cite as

Genomic distribution of a long terminal repeat (LTR) Sabrina-like retrotransposon in Triticeae species

  • C. Liu
  • Z. J. YangEmail author
  • J. Q. Jia
  • G. R. Li
  • J. P. Zhou
  • Z. L. RenEmail author


Knowledge of the chromosomal distribution of long terminal repeats (LTR) is important for understanding plant chromosome structure, genomic organization and evolution, as well as providing chromosomal landmarks that are useful for chromosome engineering. The aim of this study is to investigate the genomic distribution of Sabrina-like LTR pDbH12, which was first isolated from Dasypyrum breviaristatum (Vb genome), on Triticeae species in relation to the genomic evolution and chromosome identification. Fluorescence in situ hybridization (FISH) analysis showed that pDbH12 is present on Dasypyrum (V genome) and Hordeum (H genome) species with the hybridized signals covering the entire chromosomes. However, clone pDbH12 did not hybridize to the genomes of Secale, Triticum, Lophopyrum, Pseduoroengeria, Aegilops, Agropyron desertorum and Elymus. Thinopyrum intermedium displayed fourteen chromosomes that hybridized with pDbH12. Sequential FISH identified these chromosomes as belonging to the Js genome. Results from sequence characterized amplified region (SCAR) marker and dot blot both support the FISH results, and the integrative results suggest that amplification of Sabrina-like LTR retrotransposons is an important factor which involved in the speciation process. Clone pDbH12 could serve as a cytogenetic marker for tracing chromatin from V or Vb, H and Js genomes in wheat-alien introgression lines.


Sabrina-like LTR Dasypyrum Thinopyrum dot blot in situ hybridization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belyayev, A., Raskina, O., Nevo, E. 2001. Chromosomal distribution of reverse transcriptase-containing retroelements in two Triticeae species. Chromosome Res. 9:129–136.CrossRefGoogle Scholar
  2. Búdvarsdóttir, S.K., Anamthawat-Jónsson, K. 2003. Isolation, characterization, and analysis of Leymus -specific DNA sequences. Genome 46:673–682.CrossRefGoogle Scholar
  3. Boeke, J.D., Garfinkel, D.J., Styles, C.A., Fink, G.R. 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500.CrossRefGoogle Scholar
  4. Brosius, J. 1991. Retroposons — seeds of evolution. Science 251:753.CrossRefGoogle Scholar
  5. Chen, Q., Conner, R.L., Laroche, A., Thomas, J.B. 1998. Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization. Genome 141:580–586.CrossRefGoogle Scholar
  6. Flavell, R.B. 1986. Repetitive DNA and chromosome evolution in plants. Philos. Trans. R. Soc. B Biol. Sci. 312:227–242.CrossRefGoogle Scholar
  7. Francki, M.G. 2001. Identification of Bilby, a diverged centromeric Ty1- copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44:266–274.CrossRefGoogle Scholar
  8. Gribbon, B.M., Pearce, S.R., Kalendar, R., Schulman, A.H., Paulin, L., Jack, P.L., Kumar, A., Flavell, A.J. 1999. Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol. Gen. Genet. 261:883–891.CrossRefGoogle Scholar
  9. Hansen, C.N., Heslop-Harrison, J.S. 2004. Sequences and phylogenies of plant pararetroviruses, viruses and transposable elements. Adv. Bot. Res. 41:165–193.CrossRefGoogle Scholar
  10. Heslop-Harrison, J.S. 2000. Comparative genome organization in plants: From sequence and markers to chromatin and chromosomes. Plant Cell 12:617–636.CrossRefGoogle Scholar
  11. Heslop-Harrison, J.S., Brandes, A., Taketa, S., Schmidt, T., Vershinin, A.V., Alkhimova, E.G., Kamm, A., Doudrick, R.L., Schwarzacher, T., Katsiotis, A., Kubis, S., Kumar, A., Pearce, S.R., Flavell, A. 1997. The chromosomal distribution of Ty1-copia group retrotransposable elements in higher plants and their implication for genome evolution. Genetica 100:197–204.CrossRefGoogle Scholar
  12. Kellogg, E.A., Appels, R., Mason-Gamer, R.J. 1996. When genes tell different stories: The diploid genera of Triticeae (Gramineae). Syst. Bot. 21:321–347.CrossRefGoogle Scholar
  13. Kishii, M., Wang, R.R.-C., Tsujimoto, H. 2005. GISH analysis revealed new aspect of genomic constitution of Thinopyrum intermedium. In: Proceedings of the 5 th International Triticeae Symposium, Prague, Czech Republic, 6–10 June 2005. Czech J. Genet. Plant Breed. 41:92–95.CrossRefGoogle Scholar
  14. Kong, X.Y., Gu, Y.Q., You, F.M., Dubcovsky, J., Anderson, O.D. 2004. Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Plant Mol. Biol. 54:55–69.CrossRefGoogle Scholar
  15. Kumar, A., Bennetzen, J.L. 1999. Plant retrotransposons. Annu. Rev. Genet. 33:479–532.CrossRefGoogle Scholar
  16. Kunze, R., Saedler, H., Lonnig, W. 1997. Plant transposable elements. Adv. Bot. Res. 27:332–470.Google Scholar
  17. Li, W.L., Zhang, P., Fellers, J.P., Friebe, B., Gill, B.S. 2004. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J. 40:500–511.CrossRefGoogle Scholar
  18. Liu, C., Li, G.R., Yang, Z.J., Feng, J., Zhou, J.P., Ren, Z.L. 2006a. Isolation and application of specificDNAsegments of rye genome. Acta Bot. Boreal.-Occident. Sin. 26:2434–2438.Google Scholar
  19. Liu, C., Yang, Z.J., Feng, J., Zhou, J.P., Ren, Z.L. 2006b. Isolation, mapping and application of a LTR fragment for Dasypyrum genome. Acta Agron. Sin. 32:1642–1648.Google Scholar
  20. Mason-Gamer, R.J. 2001. Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based on granule-bound starch synthase gene sequences. Syst. Bot. 26:757–768.Google Scholar
  21. Mason-Gamer, R.J. 2004. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Syst. Biol. 53:25–37.CrossRefGoogle Scholar
  22. Megan Helfgott, D., Mason-Gamer, R.J. 2004. The evolution of North American Elymus (Poaceae: Triticeae) allotetraploids: evidence from phosphoenolpyruvate carboxylase gene sequences. Syst. Bot. 29:850–861.CrossRefGoogle Scholar
  23. Mukai, Y., Nakahara, Y., Yamamoto, M. 1993. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494.CrossRefGoogle Scholar
  24. Petersen, G., Seberg, O. 1997. Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. Mol. Phylogenet. Evol. 7:214–230.CrossRefGoogle Scholar
  25. Ramakrishna, W., Dubcovsky, J., Park, Y., Busso, C., Emberton, J., SanMiguel, P., Bennetzen, J.L. 2002. Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162:1389–1400.PubMedPubMedCentralGoogle Scholar
  26. SanMiguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D., Melake Berhan, A., Springe, P.S., Edwards, K.J., Avramova, Z., Bennetzen, J.L. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768.CrossRefGoogle Scholar
  27. Shirasu, K., Schulman, A. H., Lahaye, T., Schulze-Lefert, P. 2000. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10:908–915.CrossRefGoogle Scholar
  28. Vicient, C.M., Suoniemi, A., Anamthawat-Jónsson, K., Tanskanen, J., Beharav, A., Nevo, E., Schulman, A.H. 1999. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784.CrossRefGoogle Scholar
  29. Wei, F.S., Wing, R.A., Wise, R.P. 2002. Genome dynamics and evolution of the Mla (Powdery Mildew) resistance locus in barley. Plant Cell 14:1903–1917.CrossRefGoogle Scholar
  30. Yang, Z.J., Feng, J., Zhou, J.P., Liu, C., Ren, Z.L. 2005. Identification of Dasypyrum breviaristatum chromatin in wheat background by in situ hybridization. Southwest China J. Agricult. Sci. 18:608–611.Google Scholar
  31. Yang, Z.J., Liu, C., Feng, J., Li, G.R., Zhou, J.P., Deng, K.J., Ren, Z.L. 2006. Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas 143:47–54.CrossRefGoogle Scholar
  32. Yu, D.R., Ren, Z.L., Zhang, H.Y., Zhang, Q.J. 2000. A highly efficient technique for the detection of alien chromatin in wheat — Dot blot. J. Sichuan Univ. (Nat. Sci. Edition) S1:91–96.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  1. 1.School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduP. R. China
  2. 2.Key Laboratory for Plant Genetics and BreedingSichuan Agricultural UniversityYa’an CityP. R. China

Personalised recommendations