Advertisement

Cereal Research Communications

, Volume 37, Issue 3, pp 353–361 | Cite as

Cytomixis in Thinopyrum intermedium, Thinopyrum ponticum and its hybrids with wheat

  • X. F. Li
  • Z. Q. Song
  • D. S. Feng
  • H. G. WangEmail author
Open Access
Genetics

Abstract

Cytomixis has been described in many plant species, but not in Thinopyrum. The present study reports spontaneous cytomixis during microsporogenesis in Thinopyrum intermedium (2n = 42), Thinopyrum ponticum (2n = 70), and their F1 hybrids with wheat. Cytomixis frequently occurred in early prophase I but very rarely in meiosis II. The type of cytomixis that occurred most often was where chromatins migrate from one nucleus into an adjacent cel1. Migration from one nucleus into two or more cells or from two or more nuclei into one cel1 was also observed. After a donor cell transferred chromatin to a recipient cell, the recipient cell would sometimes pass the chromatin on to another cell. Migration did not necessarily occur between cells in the same stage. Cytomixis in Th. ponticum and its hybrids with wheat was more complex than that in Th. intermedium. The possible causes, cytological consequences and genetic significance of cytomixis are discussed.

Keywords

chromatin migration meiosis Thinopyrum 

References

  1. Bell, C.R. 1964. Cytomixis in Tauschia nudicaulis Schlecht (Apiaceae). Cytologia 29:369–398.CrossRefGoogle Scholar
  2. Bellucci, M., Roscini, C., Mariani, A. 2003. Cytomixis in pollen mother cells of Medicago sativa L. Journal of Heredity 94:512–516.PubMedCrossRefGoogle Scholar
  3. Bobak, M., Herich, R. 1978. Cytomixis as a manifestation of pathological changes after the application of trifluraline. Nucleus 21:22–26.Google Scholar
  4. Boldrinia, K.R., Pagliarinia, M.S. 2006. Cell fusion and cytomixis during microsporogenesis in Brachiaria humidicola (Poaceae). South African Journal of Botany 72:478–481.CrossRefGoogle Scholar
  5. Chen, Q., Collin, J., Comeau, A., St-Pierre, C.A., Fedak, G. 1997. Comparison of various sources of resistance to barley yellow dwarf virus in wheat — Thinopyrum amphiploid lines. Can. J. Plant Pathol. 19:414–417.CrossRefGoogle Scholar
  6. Cheng, K.C., Nieh, H.W., Yang, C.L. 1975. Light and electron microscopical observations on cytomixis and the study of its relation to variation and evolution. Acta Bot. Sin. 17:60–69.Google Scholar
  7. Cooper, D.D. 1952. The transfer of deoxyribose nucleic acid from the tapetum to the microsporocytes at onset of meiosis. Am. Nat. 86:219–229.CrossRefGoogle Scholar
  8. de Souza, A.M., Pagliarini, M.S. 1997. Cytomixis in Brassica napus var. oleifera and Brassica campestris var. oleifera (Brassicaceae). Cytologia 62:25–29.CrossRefGoogle Scholar
  9. Falistocco, E., Tosti, N., Falcinelli, M. 1995. Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes. J. Hered. 86:448–453.CrossRefGoogle Scholar
  10. Fedak, G. 1999. Molecular aids for integration of alien chromatin through wide crosses. Genome 42:584–591.CrossRefGoogle Scholar
  11. Friebe, B., Jiang, J.M., Raupp, W.J., McIntosh, R.A., Gill, B.S. 1996. Characterization of wheat-alien translocations conferring resistance to disease and pests: Current status. Euphytica 91:59–87.CrossRefGoogle Scholar
  12. Gates, R.R. 1911. Pollen formation in Oenothera gigas. Annals of Botany 25:909–940.CrossRefGoogle Scholar
  13. Ghanima, A.M., Talaat, A.A. 2003. Cytomixis and its possible evolutionary role in a Kuwaiti population of Diplotaxis harra (Brassicaceae). Botanical Journal of the Linnean Society 143:169–175.CrossRefGoogle Scholar
  14. Gottschalk, W. 1970. Chromosome and nucleus migration during microsporogenesis of Pisum sativum. Nucleus 13:1–9.Google Scholar
  15. Guo, G.Q., Zheng, G.C. 2004. Hypotheses for the functions of intercellular bridges in male germ cell development and its cellular mechanisms. Journal of Theoretical Biology 229:139–146.PubMedCrossRefGoogle Scholar
  16. Heslop-Harrison, J. 1966. Cytoplasmic connections between angiosperm meiocytes. Ann. Bot. 30:221–230.CrossRefGoogle Scholar
  17. Jiang, J.M., Friebe, B., Gill, B.S. 1994. Recent advances in alien gene transfer in wheat. Euphytica 73:199–212.CrossRefGoogle Scholar
  18. Körnicke, M. 1901. Über Ortsveränderung von Zellkärnern S.B. Niederrhein. Ges. Natur- und Heilkunde, Bonn A:14–25.Google Scholar
  19. Kostritsyna, T.V., Soldatov, I.V. 1991. Cytomixis in apical meristems of Prunus domestica L. × Perisca vulgaris Mill. hybrid shoots. Genetica 27:1790–1794.Google Scholar
  20. Kwiatkowska, M., Poplónska, K., Wojtczak, A. 2003. Chara tomentosa antheridial plasmodesmata at various stages of spermatogenesis. Biol. Plant 46:233–238.CrossRefGoogle Scholar
  21. Lattoo, S.K., Khan, S., Bamotra, S., Dhar, A.K. 2006. Cytomixis impairs meiosis and in?uences reproductive success in Chlorophytum comosum (Thunb) Jacq. — an additional strategy and possible implications. J. Biosci. 31:629–637.PubMedCrossRefGoogle Scholar
  22. Mantu, D.E., Sharma, A.K. 1983. Cytomixis in pollen mother cells of an apomictic ornamental Ervatamia divaricata (Linn.) Alston. Cytologia 48:201–207.CrossRefGoogle Scholar
  23. Marzenna, G., Adam, W. 2005. Cytomixis in shoot apex of Norway spruce [Picea abies (L.) Karst.]. Trees 18:722–724Google Scholar
  24. Muranty, H., Sourdille, P., Bernard, S., Bernard, M. 2002. Genetic characterization of spontaneous diploid androgenic wheat and triticale plants. Plant Breed 121:470–474.CrossRefGoogle Scholar
  25. Omara, M.K. 1976. Cytomixis in Lolium perenne. Chromosoma 55:267–271.CrossRefGoogle Scholar
  26. Patra, N.K., Chauhan, S.P., Srivastava, H.K. 1986. Syncites with premeiotic mitotic and cytomictic comportment in opium poppy (Papaver somniferum L.). Indian J. Genet. 47:49–54.Google Scholar
  27. Pierozzi, N.I., Benatti, J.R. 1998. Cytological analysis in the microsporogenesis of ramie, Boehmeria nivea Gaud. (Urticaceae) and the effect of colchicine on the chiasma frequency. Cytologia 63:213–221.CrossRefGoogle Scholar
  28. Sarvella, P. 1958. Cytomixis and loss of chromosomes in meiotic and somatic cells of Gossypium. Cytologia 23:14–24.CrossRefGoogle Scholar
  29. Soodan, A.S., Waffai, B.A. 1987. Spontaneous occurrence of cytomixis during microsporogenesis in almond (Prunus amygdalus Batsch) and peach (P. persica Batsch). Cytologia 52:361–364.CrossRefGoogle Scholar
  30. Srivastav, P.K., Raina, S.N. 1980. Cytomixis in Clitoria ternantea L. var. pleniflora Fantz. f. pleniflora. Curr. Sci. 49:824–835.Google Scholar
  31. Tariq, A.B., Sahba, P., Ainul, H.K. 2006. MMS-Induced cytomixis in pollen mother cells of broad bean (Vicia faba L.) Turk J. Bot. 30:273–279.Google Scholar
  32. Tarkowska, J. 1960. Cytomixis in the epidermis of scales and leaves and in meristems of root apex of Allium cepa L. Acta Soc. Bot. Polon. 29:149–168.CrossRefGoogle Scholar
  33. Tarkowska, J. 1973. The nature of cytomixis. Caryologia (Suppl) 25:151–157.CrossRefGoogle Scholar
  34. Ventela, S., Toppari, J., Parvinen, M. 2003. Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing. Mol. Biol. Cell 14:2768–2780.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Wang, H.G., Qi, Z.J., Kong, F.J., Gao, J.R., Kong, L.R. 1998. Cytological characteristic on microsporogenesis and male gametophyte development of (T. aestivum / E. elongata) F 1. Acta Botanica Boreali-Occidenatalia Sinica 18(1):14–18.Google Scholar
  36. Wang, H.G., Kong, L.R., Li, P.L., Qi, Z. J., Liu, S.B., Kong, F.J., Zhu, J. 1999. Studies of cytogenetic and traits characteristics on the offspring between Elytrigia intermedium and Triticum aestivum. Acta Agronomica Sinica 25:373–380.Google Scholar
  37. Wang, R.R.C. 1988. Coenocytism, ameiosis, and chromosome diminution in intergeneric hybrids in the perennial Triticeae. Genome 30:766–775.CrossRefGoogle Scholar
  38. Wang, R.R.C., Liang, G.H. 1977. Cytogenetic location of genes for resistance to wheat streak mosaic in an Agropyron substitution line. J. Hered. 68:375–378.CrossRefGoogle Scholar
  39. Wang, R.R.C., Li, X.M., Hu, Z.M., Zhang, J.Y., Larson, S.R., Zhang, X.Y., Grieve, C.M., Shannon, M.C. 2003. Development of salinity-tolerant wheat recombinant lines from a wheat disomic addition line carrying a Thinopyrum junceum chromosome. Int. J. Plant Sci. 164:25–33.CrossRefGoogle Scholar
  40. Zhang, W.C. 2002. Progress in research on intercellular movement of protoplasm in higher plants. Acta Bot. Sin. 44:1068–1074.Google Scholar
  41. Zheng, G.C., Yang, Q., Zheng, Y. 1987. The relationship between cytomixis, chromosome mutation and karyotype evolution in Lily. Caryologia 40:243–259.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • X. F. Li
    • 1
    • 2
  • Z. Q. Song
    • 2
  • D. S. Feng
    • 2
  • H. G. Wang
    • 1
    Email author
  1. 1.State Key Laboratory of Crop BiologyShandong Agricultural UniversityTai’anChina
  2. 2.Subcentre of National Wheat Improvement Center, Agronomy CollegeShandong Agricultural UniversityTai’anChina

Personalised recommendations