Advertisement

Cereal Research Communications

, Volume 37, Issue 3, pp 345–352 | Cite as

Analysis of cpSSR in triticale plants obtained by in vitro androgenesis

  • J. M. GonzálezEmail author
  • P. Rubio
  • A. López
  • N. Jouve
Genetics

Abstract

In vitro androgenesis allows haploid and double haploid homozygous plants to be obtained. However, in cereals, non-viable albino plants are often produced. This limits the use of this technique both in basic studies and in plant genetic improvement programs. We have analyzed eight microsatellites of the chloroplast genome (cpSSR) in a collection of 46 double haploid green lines derived from the intervarietal hybrid ‘Torote’ × ‘Presto’, and 49 haploid albino plants all obtained from the double haploid line ‘ATOPE-41’, in order to know the stability of this sequences after the androgenetic process. The green plants showed no variations at the analyzed loci, while two of the albino plants differed at two loci: WCt2 and WCt9. These variations notably affected the microsatellite nucleotide sequences as well as the sequences surrounding them. The changes observed consisted of insertions, deletions and nucleotide substitutions, with transition and transversion types equally common. The latter albino plants showed several alleles at the polymorphic loci, indicating the existence of heteroplasmy.

Keywords

albino plants Triticale cpSSR double haploids microsatellites androgenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., Li, N., Togashi, A., Sasahara, T. 2002. Large deletions in chloroplast DNA of rice calli after long-term culture. J. Plant Physiol. 159: 917–923.CrossRefGoogle Scholar
  2. Caredda, S., Clément, C. 1999. Androgenesis and albinism in Poaceae: influence of genotype and carbohydrates. In: Clément, C., Pacini, E., Andran, J.C. (eds), Anther and Pollen: From Biology to Biotechnology. Springer Verlag, Berlin, Heidelberg, Tokyo, pp. 211, 228.CrossRefGoogle Scholar
  3. Caredda, S., Devaux, P., Sangwan, R.S., Clément, C. 1999. Differential development of plastids during microspore embryogenesis in barley. Protoplasma. 208:248–256.CrossRefGoogle Scholar
  4. Caredda, S., Devaux, P., Sangwan, R.S., Proult, I., Clément, C. 2004. Plastid ultrastructure and DNA related to albinism in androgenetic embryos of various barley (Hordeum vulgare) cultivars. Plant Cell, Tiss. Organ Cult. 76:35–43.CrossRefGoogle Scholar
  5. Caredda, S., Doncoeur, C., Devaux, P., Sangwan, R.S., Clément, C. 2000. Plastid differentiation during androgenesis in albino and non-albino producing cultivars of barley (Hordeum vulgare L.). Sex Plant Reprod. 13:95–104.CrossRefGoogle Scholar
  6. Chen, X., Cho, Y.G., McCouch, S.R. 2002. Sequence divergence of rice microsatellites in Oryza and other plant species. Mol. Genet. Genomics 268:331–343.CrossRefGoogle Scholar
  7. Day, A., Ellis, T.H.N. 1984. Chloroplast DNA deletions associated with wheat plants regenerated from pollen: Possible basis for maternal inheritance of chloroplasts. Cell 39:359–368.CrossRefGoogle Scholar
  8. Dunford, R., Walden, R.M. 1991. Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture. Curr. Genet. 20:339–347.CrossRefGoogle Scholar
  9. González, J.M., Hernández, I., Jouve, N. 1997. Analysis of anther culture response in hexaploid triticale. Plant Breeding 116:302–304.CrossRefGoogle Scholar
  10. González, J.M., Jouve, N. 2000. Improvement of anther culture media for haploid production in triticale. Cereal Res. Commun. 28:65–72.Google Scholar
  11. González, J.M., Muñiz, L.M., Jouve, N. 2005. Mapping of Qtls for androgenetic response based on a molecular genetic map of × Triticosecale Wittmack. Genome 48:999–1009.CrossRefGoogle Scholar
  12. Harada, T., Sato, T., Asaka, D., Matsukawa, I. 1991. Large-scale deletion of rice plastid DNA in anther culture. Theor. Appl. Genet. 81:157–161.CrossRefGoogle Scholar
  13. Horlow, C., Raquin, C. 1998. A critical analysis of existing haploidization techniques. In: Chupeau, Caboche, Henri (eds), Androgenesis and Haploid Plants. INRA/Springer Verlag, pp. 7–23.Google Scholar
  14. Ishii, T., Mori, N., Ogihara, Y. 2001. Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor. Appl. Genet. 103:896–904.CrossRefGoogle Scholar
  15. Jain, S.M. 2001. Tissue culture-derived variation in crop improvement. Euphytica 118:153–166.CrossRefGoogle Scholar
  16. Jacobsson, M., Säll, T., Lind-Halldén, C., Halldén, C. 2007. Evolution of chloroplast mononucleotide microsatellites in Arabidopsis thaliana. Theor. Appl. Genet. 114:223–235.CrossRefGoogle Scholar
  17. Larkin, P.J., Scowcroft, W.R. 1981. Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197–214.CrossRefGoogle Scholar
  18. Larsen, E.T., Tuvesson, I.K.D., Andersen, S.B. 1991. Nuclear genes affecting percentage of green plants in barley (Hordeum vulgare L.) anther culture. Theor. Appl. Genet. 82:417–420.CrossRefGoogle Scholar
  19. Liu, N.T., Jane, W.N., Tsay, H.S., Wu, H., Chang, W.C., Lin, C.S. 2007. Chloroplast genome aberration in micropropagation-derived albino Bambusa edulis mutants, ab1 and ab2. Plant Cell, Tiss. Organ Cult. 88:147–156.CrossRefGoogle Scholar
  20. Matsuoka, Y., Yamazaki, Y., Ogihara, Y., Tsunewaki, K. 2002. Whole chloroplast genome comparison of rice, maize and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol. Biol. Evo. 19:2084–2091.CrossRefGoogle Scholar
  21. Matsuoka, Y., Mori, N., Kawahara, T. 2005. Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss. Theor. Appl. Genet. 111:265–271.CrossRefGoogle Scholar
  22. Molina-Cano, J.L., Russell, J.R., Moralejo, M.A., Escacena, J.L., Arias, G., Powell, W. 2005. Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theor. Appl. Genet. 110:613–619.CrossRefGoogle Scholar
  23. Mogensen, H.L. 1996. The hows and whys of cytoplasmic inheritance in seed plants. Am. J. Bot. 83:383–404.CrossRefGoogle Scholar
  24. Moxon, E.R., Wills, C. 1999. DNA microsatellites: agents of evolution? Sci. Am. 280:94–99.CrossRefGoogle Scholar
  25. Nishikawa, T., Vaughan, D.A., Kadowaki, K. 2005. Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochrondrial and chloroplast genomes. Theor. Appl. Genet. 110:696–705.CrossRefGoogle Scholar
  26. Ogihara, Y., Isono, K., Kojima, T., Endo, A., Hanaoka, M., Shiina, T., Terachi, T., Utsugi, S., Murata, M., Mori, N., Takumi, S., Ikeo, K., Gojobori, T., Murai, R., Murai, K., Matsuoka, Y., Ohnishi, Y., Tajiri, H., Tsunewaki, K. 2000. Chinese Spring wheat (Triticum aestivum L.) chloroplast genome: Complete sequence and contig clones. Plant Mol. Biol. Rep. 18:243–253.CrossRefGoogle Scholar
  27. Ogihara, Y., Ohsawa, T. 2002. Molecular analysis of the complete set of length mutation found in the plastomes of Triticum-Aegilops species. Genome 45:956–962.CrossRefGoogle Scholar
  28. Powell, W., Morgante, M. 1995. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr. Biol. 5:1023–1029.CrossRefGoogle Scholar
  29. Provan, J., Powell, W., Hollingsworth, P.M. 2001. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends in Ecology & Evolution 16:142–147.CrossRefGoogle Scholar
  30. Rakoczy-Trojanowska, M., Bolibok, H. 2004. Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. Cellular & Molecular Biology Letters. 9:221–238.Google Scholar
  31. Takeuchi, R., Kimura, S., Saetome, A., Sakaguchi, K. 2007. Biochemical properties of a plastidial DNA polymerase of rice. Plant Mol. Biol. 64:601–611.CrossRefGoogle Scholar
  32. Tuvesson, I.K.D., Pedersen, S., Andersen, S.B. 1989. Nuclear genes affecting albinism in wheat (Triticum aestivum L.) anther culture. Theor. Appl. Genet. 78:879–883.CrossRefGoogle Scholar
  33. Varshney, R.K., Graner, A., Sorrells, M.E. 2005. Genic microsatellite markers in plants: Features and applications. TRENDS in Biotechnology 23:48–55.CrossRefGoogle Scholar
  34. Zhou, H., Konzak, C.F. 1992. Genetic control of green plant regeneration from anther culture of wheat. Genome 35: 957–960.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • J. M. González
    • 1
    Email author
  • P. Rubio
    • 1
  • A. López
    • 1
  • N. Jouve
    • 1
  1. 1.Department of Cell Biology and Genetics, Campus UniversitarioUniversity of AlcaláMadridSpain

Personalised recommendations