Cereal Research Communications

, Volume 37, Issue 3, pp 431–440 | Cite as

Identification of the Lr34/Yr18 rust resistance gene region in a Hungarian wheat breeding programme

  • Z. L. Wang
  • L. Láng
  • A. Uhrin
  • O. Veisz
  • S. D. Liu
  • G. VidaEmail author


The presence and frequency of the resistance gene complex Lr34/Yr18 was investigated in the wheat breeding programme of the Agricultural Research Institute, Martonvásár, Hungary. A total of 226 wheat cultivars and advanced lines from Hungary and other countries were tested with an STS marker, csLV34, to understand the distribution of the Lr34/Yr18 resistance gene complex. A 150-bp PCR fragment was amplified in 64 wheat cultivars and lines with the resistance genes Lr34/Yr18, while a 229-bp fragment was detected in 162 genotypes without Lr34/Yr18. The genotypes with Lr34/Yr18 accounted for 28.3% of the wheat cultivars and advanced lines tested. Among the 128 varieties and breeding lines of Martonvásár origin tested, 34 carried the Lr34/Yr18 genes, with a frequency of 26.6%. The frequency of these genes was 30.6% in genotypes of other origin. The STS marker csLV34 could be used as an effective tool for the marker-assisted selection of Lr34/Yr18 genes in breeding wheat cultivars with durable rust resistance.


Triticum aestivum L. leaf rust marker-assisted selection Lr34/Yr18 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bahl, P.N., Salimath, P.M., Mandal, A.K. 1997. Genetics, Cytogenetics and Breeding of Crop Plants. Oxford & IBH Publishing Co. PVT LTD, New Delhi and Calcutta, pp. 75–144.Google Scholar
  2. Bossolini, E., Krattinger, S.G., Keller, B. 2006. Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor. Appl. Genet. 113:1049–1062.CrossRefGoogle Scholar
  3. Caldwell, R.M. 1968. Breeding for general and/or specific plant disease resistance. In: Finlay, K.W., Shephard, K.W. (eds). Proceedings of 3 rd International Wheat Genetics Symposium. Australian Academy of Sciences, Canberra, pp. 263–272.Google Scholar
  4. Chełkowski, J., Stȩpiem, Ł. 2001. Molecular markers for leaf rust resistance genes in wheat. J. Appl. Genet. 42:117–126.PubMedGoogle Scholar
  5. Dyck, P.L. 1994. Genetics of resistance to leaf rust and stem rust on wheat. Annual Wheat Newsletter 40:63–64.Google Scholar
  6. Dyck, P.L. 1987. The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467–469.CrossRefGoogle Scholar
  7. Dyck, P.L. 1991. Genetics of adult-plant leaf rust resistance in Chinese Spring and Sturdy wheats. Crop Sci. 31:309–311.CrossRefGoogle Scholar
  8. Dyck, P.L., Samborski, D.J. 1982. The inheritance of resistance to Puccinia recondita in a group of common wheat cultivars. Can. J. Genet. Cytol. 24:273–283.CrossRefGoogle Scholar
  9. Dyck, P. L., Samborski, D.J., Anderson, R.G. 1966. Inheritance of adult-plant leaf rust resistance derived from the common wheat varieties Exchange and Frontana. Can. J. Genet. Cytol. 8:665–671.CrossRefGoogle Scholar
  10. Kolmer, J.A., Singh, R.P., Garvin, D.F., Viccars, L., William, H.M., Huerta-Espino, J., Ogbonnaya, F.C., Raman, H., Orford, S., Bariana, H.S., Lagudah, E.S. 2008. Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci. 48:1841–1852.CrossRefGoogle Scholar
  11. Lagudah, E.S., McFadden, H., Singh, R.P., Huerta, E.J., Bariana, H.S., Spielmeyer, W. 2006. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet. 114:21–30.CrossRefGoogle Scholar
  12. Liang, D., Yang, F.P., He, Z.H., Yao, D.N., Xia, X.C. 2009. Characterization of Lr34/Yr18, Rht-B1b, Rht-D1b Genes in CIMMYT wheat cultivars and advanced lines using STS markers. Scientia Agricultura Sinica 42:17–27.Google Scholar
  13. Lillemo, M., Asalf, B., Singh, R.P., Huerta-Espino, J., Chen, X.M., He, Z.H., Bjørnstad, Å. 2008. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor. Appl. Genet. 116:1155–1166.CrossRefGoogle Scholar
  14. McIntosh, R.A., Wellings, C.R., Park, R.F. 1995. Wheat Rusts–An Atlas of Resistance Genes. Kluwer Academic Publishers, Dordrecht, Boston, London, 200 pp.CrossRefGoogle Scholar
  15. McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Somers, D.J., Appels, R., Devos, K.M. 2008. Catalogue of gene symbols for wheat. In: Komugi–Integrated Wheat Science Database. Accessed 14 Jan 2009
  16. Rubiales, D., Niks, R.E. 1995. Characterization of Lr34, a major gene conferring non-hypersensitive resistance to wheat leaf rust. Plant Dis. 79:1208–1212.CrossRefGoogle Scholar
  17. Seah, S., Sivasithamparam, K., Karakousis, A., Lagudah, E.S. 1998. Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley. Theor. Appl. Genet. 97:937–945.CrossRefGoogle Scholar
  18. Singh, R.P., Chen, W.Q., He, Z.H. 1999. Leaf rust resistance of spring, facultative, and winter wheat cultivars from China. Plant Dis. 83:644–651.CrossRefGoogle Scholar
  19. Singh, R.P. 1992. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology 82:835–838.CrossRefGoogle Scholar
  20. Singh, R.P., Huerta-Espino, J., Rajaram, S. 2000. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathologica et Entomologica Hungarica 35:133–139.Google Scholar
  21. Singh, R.P., Rajaram, S. 1992. Genetics of adult-plant resistance to leaf rust in ‘Frontana’ and three CIMMYT wheats. Genome 35:24–31.CrossRefGoogle Scholar
  22. Singh, R.P., Rajaram, S. 1994. Genetics of adult plant resistance to stripe rust in ten spring bread wheats. Euphytica 72:1–7.CrossRefGoogle Scholar
  23. Spielmeyer, W., McIntosh, R.A., Kolmer, J., Lagudah, E.S. 2005. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor. Appl. Genet. 111:731–735.CrossRefGoogle Scholar
  24. Spielmeyer, W., Singh, R.P., McFadden, H., Wellings, C.R., Huerta-Espino, J., Kong, X., Appels, R., Lagudah, E.S. 2008. Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor. Appl. Genet. 116:481–490.CrossRefGoogle Scholar
  25. Stubbs, R.W., Prescott, E.E., Saari, E.E., Dubin, H.J. 1986. Cereal Disease Methodology Manual. CIMMYT, Mexico, 46 pp.Google Scholar
  26. Yoshimura, S., Yoshimura, A., Iwata, N., McCouch, S.R., Abenes, M.L., Baraoidan, M.R., Mew, T.W., Nelson, R. 1995. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol. Breed. 1:375–387.CrossRefGoogle Scholar
  27. Zadoks, J.C., Chang, T.T., Konzak, C.F. 1974. A decimal code for the growth stages of cereals. Weed Research 14:415–421.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • Z. L. Wang
    • 1
  • L. Láng
    • 2
  • A. Uhrin
    • 2
  • O. Veisz
    • 2
  • S. D. Liu
    • 1
  • G. Vida
    • 2
    Email author
  1. 1.College of AgronomyNorthwest A&F UniversityYangling, ShaanxiChina
  2. 2.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations