Advertisement

Cereal Research Communications

, Volume 37, Issue 3, pp 419–429 | Cite as

Protective effect of the naturally occurring, biologically active compound S-methylmethionine in maize seedlings exposed to a short period of cold

  • D. Szegő
  • I. Lőrincz
  • V. Soós
  • E. Páldi
  • T. Visnovitz
  • Z. Bratek
  • D. Lásztity
  • Z. Szigeti
  • I. RáczEmail author
Physiology

Abstract

The work was aimed at investigating short-term metabolic changes caused by S-methylmethionine (SMM) and at clarifying the gene expression background of these changes in order to gain a better understanding of the protective effect of SMM against stress. When examining the expression of genes coding for the enzymes responsible for the biosynthesis of polyamines, which play an important role in responses to low temperature stress, and that of the C-repeat binding transcription factor (CBF1) gene, it was found that both SMM and cold treatment increased the expression of genes responsible for the polyamine synthesis pathway starting from arginine. It caused only a slight increase when applied alone, but when SMM pre-treatment was followed by cold stress, it resulted in a considerable extent of up-regulation. SMM caused a similar increase in the expression of CBF1. The changes in the expression of genes responsible for the polyamine synthesis were clearly reflected in changes in the putrescine and agmatine contents, while the greater increase in the spermidine content was indicative of the role of SMM as a direct precursor in spermidine biosynthesis. The results demonstrated that, in addition to its direct effect on the sulphur metabolism and on polyamine biosynthesis, the protective effect of exogenous SMM was chiefly manifested in its influence on the expression of genes responsible for the biosynthesis of the polyamines important for stress responses and on the CBF1 transcription factor gene that acts as a regulator in cold stress.

Keywords

S-methylmethionine cold stress gene expression changes polyamines maize 

References

  1. Bencsik, K., Kremmer, T., Boldizsár, J., Tamás, J., Mák, M., Páldi, E. 1998. High-performance liquid chromatographic determination and standardization of agmatine. J. Chromat. A. 824:175–180.CrossRefGoogle Scholar
  2. Bhosale, S.U., Rymen, B., Beemster, B., Melchinger, G.T.S., Reif. J.C. 2007. Chilling tolerance of Central European maize lines and their factorial crosses. Annals of Botany 100:1315–1321.CrossRefGoogle Scholar
  3. Bourgis, F., Roje, S., Nuccio, L.M., Fisher, D.B., Tarczynski, M.C., Li, C., Herschbach, C., Rennenberg, H., Pimenta, M.J., Shen, T.L., Gage, D.A., Hanson, A.D. 1999. S-methylmethionine plays a major role in phloem sulfurtransport and is synthesized by a novel type of methyltransferase. The Plant Cell 11:1485–1497.CrossRefGoogle Scholar
  4. Buckler, E.S., Gaut, B.S., McMullen, M.D. 2006. Molecular and functional diversity of maize. Current Opin. Plant Biol. 9:172–176.CrossRefGoogle Scholar
  5. Galston, A.W., Kaur-Sawhney, R. 1995. Polyamines as endogenous growth regulators. In: Davis, P. J. (ed.) Plant Hormons Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publisher, Doordrecht, pp. 158–178.Google Scholar
  6. Gyetvai, E., Rácz, I., Lásztity, D., Szalai, G., Janda, T., Marton, L., Horváth, E., Páldi, E. 2002. Effect of S-methylmethionine as a protective compound on the metabolism of agricultural plants at low temperature. Acta Biol. Szegediensis 46:3–4.Google Scholar
  7. Holland, N., Holland, D., Helentjaris, T., Dhugga, K.S., Xoconostle-Cazares, B., Delmer, D.P. 2000. Acomparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol. 123:1313–1324.CrossRefGoogle Scholar
  8. Janda, T., Kósa, E., Pintér, J., Szalai, G., Marton, L., Páldi, E. 2005. Antioxidant activity and chilling tolerance of young maize inbred lines and their hybrids. Cereal Res. Commun. 33:538–541.CrossRefGoogle Scholar
  9. Kocsis, M.G., Nolte, K.D., Rhodes, D., Shen, T.L., Gage, D.A., Hanson, A.D. 1998. Dimethylsulfoniopropionate biosynthesis in spartina alterniflora. Evidence that S-methylmethionine and dimethylsulfoniopropylamine are intermediates. Plant Physiol. 117:273–281.CrossRefGoogle Scholar
  10. Lásztity, D., Rácz, I., Páldi, E. 1992. Effect of DL-S-methyl methionine on polyamine biosynthesis. Physiol. Plantarum 85:A 68, 389.Google Scholar
  11. Messing, J., Bharti, A.K., Karlowski, W.M., Gundlach, H., Kim, H.R., Yu, Y., Wei, F., Fuks, G., Soderlund, C.A., Mayer, K.F. 2004. Sequence composition and genome organization of maize. Proc. Natl. Acad. Sci. USA 101:14349–14354.CrossRefGoogle Scholar
  12. Pál, M., Nagy, E. 2002. Chilling tolerance of maize. Acta Agron. Hung. 50:95–106.CrossRefGoogle Scholar
  13. Quin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., Shinozaki K., Yamaguchi-Shinozaki, K. 2004. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 45: 1042–1052.CrossRefGoogle Scholar
  14. Rácz, I., Kovács, M., Lásztity, D., Veisz, O., Szalai, G., Páldi, E. 1996. Effect of short-term and long-term low temperature stress on polyamine biosynthesis in wheat genotypes with varying degrees of frost tolerance. J. Plant Physiol. 148:368–373.CrossRefGoogle Scholar
  15. Rácz, I., Páldi, E., Szalai, G., Janda, T., Pál M., Lásztity, D. 2008. S-methylmethionine reduces cell membrane damage in higher plants exposed to low temperature stress. J. Plant Physiol. 165:1483–1490CrossRefGoogle Scholar
  16. Ranocha, P., McNeil, S.D., Ziemak, M.J., Li, C., Tarczynski, M.C., Hanson, A.D. 2001. The S-methylmethionine cycle in angiosperms: Ubiquity, antiquity and activity. The Plant Journal 25:575–584.CrossRefGoogle Scholar
  17. Rodriguez-Kessler, M., Alpuche-Solýs, A.G., Ruiz, O.A., Jimenez-Bremont, J.F. 2006. Effect of salt stress on the regulation of maize (Zea mays L.) genes involved in polyamine biosynthesis. Plant Growth Regulation 48:175–185.CrossRefGoogle Scholar
  18. Su, Y.H., Frommer, W.B., Ludewig, U. 2004. Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol. 136:3104–3113.CrossRefGoogle Scholar
  19. Szalai, G., Horváth, E., Pál, M., Janda, T., Páldi, E. 2005. Investigations on the adaptability of maize lines hybrids to low temperature and cadmium. Acta Agron. Hung. 53:183–196.CrossRefGoogle Scholar
  20. Szegő, D., Kósa, E., Horváth, E. 2007. Role of S-methylmethionine in the plant metabolism. Acta Agron. Hung. 55:491–508.CrossRefGoogle Scholar
  21. Yang, T., Zhang, L., Zhang, T., Zhang, H., Xu, S., An, L. 2005. Transcriptional regulation network of cold-responsive genes in higher plants. Plant Science 169:987–995CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • D. Szegő
    • 1
  • I. Lőrincz
    • 1
  • V. Soós
    • 2
  • E. Páldi
    • 2
  • T. Visnovitz
    • 1
  • Z. Bratek
    • 1
  • D. Lásztity
    • 1
  • Z. Szigeti
    • 1
  • I. Rácz
    • 1
    Email author
  1. 1.Department of Plant Physiology and Molecular Plant BiologyEötvös Loránd UniversityBudapestHungary
  2. 2.Agricultural Research InstituteHungarian Academy of SciencesMartonvásárHungary

Personalised recommendations