Cereal Research Communications

, Volume 37, Issue 3, pp 327–333 | Cite as

Locating stable across environment QTL involved in the determination of agronomic characters in wheat

  • B. Kobiljski
  • S. Dencic
  • A. Kondic-Spika
  • U. Lohwasser
  • A. BörnerEmail author


The International Triticeae Mapping Initiative (ITMI) recombinant inbred line (RIL) population was used to detect quantitative trait loci (QTL) underlying some key agronomic characters in bread wheat (Triticum aestivum L.). Trait measurements were taken from five independent field experiments performed in Serbia. Stable across environment QTL involved in the determination of heading/flowering time and ear morphology/grain yield were detected on, respectively, chromosome arms 2DS and 4AL. These map locations are consistent with those obtained where the same population has been grown in contrasting geographical sites. However, as a result of QTL × environment interactions, not all these QTL are expressed in all environments. Nevertheless the (pleiotropic) effect on ear morphology appears to be expressed in almost all environments, and so represents a high value target for wheat improvement.


agronomic performance flowering time genetic mapping quantitative trait loci (QTL) ear morphology yield components wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balint, A.F., Röder, M.S., Hell, R., Galiba, G., Börner, A. 2007. Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. Biol. Plant. 51:129–134.CrossRefGoogle Scholar
  2. Börner, A., Schumann, E., Fürste, A., Cöster, H., Leithold, B., Röder, M.S., Weber, W.E. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105:921–936.CrossRefGoogle Scholar
  3. Chesnokov, Yu.V., Pochepnya, N.V., Verzhuk, V.G., Kozlenko, L.V., Goncharova, E.A., Kapeshinskiy, A.M., Tyryshkin, L.G., Börner, A. 2007. Identification of adaptively important quantitative trait loci in hexaploid wheat Triticum aestivum L. at different ecological zones. Proc. VI Congress of Russian Society of Plant Physiologists, Syktyvkar, 18–24 June 2007, pp. 420–422.Google Scholar
  4. Chesnokov, Yu.V., Pochepnya, N.V., Börner, A., Lohwasser, U., Goncharova, E.A., Dragavtsev, V.A. 2008. Ecology-genetical organisation of plants quantitative traits and mapping of agronomically important loci in soft wheat (In Russian). Proc. Russian Academy of Sciences 418:693–696.Google Scholar
  5. Crossa, J., Burgueno, J., Dreisigacker, S., Vargas, M., Herrera-Foessel, S.A., Lillemo, M., Singh, R.P., Trethowan, R., Warburton, M., Franco, J., Reynolds, M., Crouch, J.H., Ortitz, R. 2007. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913.CrossRefGoogle Scholar
  6. Dobrovolskaya, O., Pshenichnikova, T.A., Lohwasser, U., Röder, M.S., Börner, A. 2007. Molecular mapping of genes determining hairy leaf character in wheat with respect to other species of the Triticeae. Euphytica 155:285–293.CrossRefGoogle Scholar
  7. Ganal, M., Röder, M.S. 2007. Microsatellite and SNP markers in wheat breeding. In: Varshney, R.K., Tuberosa, R. (eds), Genomics-Assisted Crop Improvement. Vol. 2: Genomics Applications in Crops, Springer Netherlands, 2007, pp. 1–24.Google Scholar
  8. Khlestkina, E.K., Pestsova, E.G., Röder, M.S., Börner, A. 2002. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor. Appl. Genet. 104:632–637.CrossRefGoogle Scholar
  9. Landjeva, S., Neumann, K., Lohwasser, U., Börner, A. 2008. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol. Plant. 52:259–266.CrossRefGoogle Scholar
  10. Lohwasser, U., Röder, M.S., Börner, A. 2005. QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica 143:247–249.CrossRefGoogle Scholar
  11. Marino, C.L., Nelson, J.C., Lu, Y.H., Sorrels, M.E., Leroy, P., Tuleen, N.A., Lopes, C.R., Hart, G.E. 1996. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). Genome 39:359–366.CrossRefGoogle Scholar
  12. Nelson, J.C. 1997. QGENE: software for mapping-based genomic analysis and breeding. Mol. Breed. 3:239–245.CrossRefGoogle Scholar
  13. Nelson, J.C., Van Deynze, A.E., Autrique, E., Sorrells, M.E., Lu, Y.H., Merlino, M., Atkinson, M., Leroy, P. 1995a. Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524.CrossRefGoogle Scholar
  14. Nelson, J.C., Van Deynze, A.E., Autrique, E., Sorrells, M.E., Lu, Y.H., Negre, S., Bernard, M., Leroy, P. 1995b. Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533.CrossRefGoogle Scholar
  15. Nelson, J.C., Sorrells, M.E., Van Deynze, A.E., Lu, Y.H., Atkinson, M., Bernard, M., Leroy, P., Faris, J.D., Anderson, J.A. 1995c. Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731.PubMedPubMedCentralGoogle Scholar
  16. Pshenichnikova, T.A., Ermakova, M.F., Chistyakova, A.K., Shchukina, L.V., Berezovskaya, E.V., Lohwasser, U., Röder, M., Börner, A. 2008a. Mapping of the quantitative trait loci (QTL) associated with grain quality characteristics of the bread wheat grown under different environmental conditions. Russ. J. Genet. 44:74–84.CrossRefGoogle Scholar
  17. Pshenichnikova, T.A., Osipova, S.V., Permyakova, M.D., Mitrofanova, T.N., Trufanov, V.A., Lohwasser, U., Röder, M., Börner, A. 2008b. Mapping of quantitative trait loci (QTL) associated with activity of disulfide reductase and lipoxygenase in grain of bread wheat T. aestivum L. Russ. J. Genet. 44:567–574.CrossRefGoogle Scholar
  18. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  19. Salem, K.F.M., Röder, M.S., Börner, A. 2007. Identification and mapping quantitative trait loci for stem reserve mobilisation in wheat (Triticum aestivum L.). Cereal Res. Comm. 35:1367–1374.CrossRefGoogle Scholar
  20. Simon, M.R., Ayala, F.M., Cordo, C.A., Röder, M.S., Börner, A. 2004. Molecular mapping of quantitative trait loci determining resistance to septoria tritici blotch (Mycosphaerella graminicola) in wheat. Euphytica 138:41–48.CrossRefGoogle Scholar
  21. Van Deynze, A.E., Dubcovsky, J., Gill, K.S., Nelson, J.C., Sorrells, M.E., Dvorak, J., Gill, B.S., Lagudah, E.S., McCouch, S.R., Appels, R. 1995. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59.CrossRefGoogle Scholar
  22. Worland, A.J., Börner, A., Korzun, V., Li, W.M., Petrovic, S., Sayers, E.J. 1998. The influence of photoperiod genes to the adaptability of European winter wheats. Euphytica 100:385–394.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • B. Kobiljski
    • 1
  • S. Dencic
    • 1
  • A. Kondic-Spika
    • 1
  • U. Lohwasser
    • 2
  • A. Börner
    • 2
    Email author
  1. 1.Institute of Field and Vegetable CropsNovi SadSerbia
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations