Cereal Research Communications

, Volume 37, Issue 2, pp 179–188 | Cite as

Portuguese bread wheat germplasm evaluation for aluminium tolerance

  • P. Martins-LopesEmail author
  • B. Maças
  • H. Guedes-Pinto


Genetic improvement in aluminium tolerance is one of the most cost-effective solutions to improve the productivity of wheat (Triticum aestivum L.) in acid soils. Sources of tolerance to this abiotic stress within adapted germplasm are limited, so the identification and characterisation of new sources are of some priority for the future of plant breeding in target areas. The aim of this study was to evaluate the response to aluminium stress of an old Portuguese wheat collection and to select the most tolerant ones for genetic and breeding purposes. An old collection of Portuguese wheat cultivars and some ‘Barbela’ lines were tested and classified in relation to aluminium tolerance and compared to modern wheat cultivars using a hydroponic approach. Three bread wheat cultivars (‘Viloso Mole’, Magueija’ and ‘Ruivo’) showed greater tolerance to 5 ppm aluminium than the international wheat standard cultivar ‘BH1146’, and so represent excellent material for understanding the genetic control of aluminium tolerance. In addition, several accessions of the Portuguese landrace ‘Barbela’ were outstanding in terms of aluminium tolerance. In particular, line 7/72/92 had a pronounced advantage over ‘BH1146’ in terms of root regrowth.


germplasm aluminium wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida, L.A.V. 1955. A material orgânica e a calagem na fertilização da terra. Boletim Ordem Engenheiros 4:1–16.Google Scholar
  2. Aniol, A. 1984. Induction of aluminum tolerance in wheat seedlings by low doses of aluminum in the nutrient solution. Plant Physiol. 76:551–555.CrossRefGoogle Scholar
  3. Aniol, A. 1990. Genetics of tolerance to aluminium in wheat (Triticum aestivum L. Thell). Plant Soil 123:223–227.CrossRefGoogle Scholar
  4. Aniol, A. 2004. Chromosomal location of aluminium tolerance genes in rye. Plant Breed. 123:132–136.CrossRefGoogle Scholar
  5. Aniol, A., Gustafson, J.P. 1984. Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Can. J. Genet. Cytol. 26:701–705.CrossRefGoogle Scholar
  6. Aniol, A., Gustafson, J.P. 1990. Genetics of tolerance in agronomic plants. In: Shaw, A.J. (ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press, Boca Flaton, FL, pp. 255–267.Google Scholar
  7. Berzonsky, W.A. 1992. The genomic inheritance of aluminum tolerance in ‘Atlas 66’ wheat. Genome 35:689–693.CrossRefGoogle Scholar
  8. Berzonsky, W.A., Kimber, G. 1986. Tolerance of Triticum species to aluminum. Plant Breed. 97:275–278.CrossRefGoogle Scholar
  9. Bona, L., Carver, B.F., Wright, R.J., Baligar, V.C. 1994. Aluminum tolerance of segregating wheat populations in acid soil and nutrient solution. Commun. Soil Sci. Plant Anal. 25:327–339.CrossRefGoogle Scholar
  10. Camacho, M.V., Matos, M., González, C., Pérez-Flores, V., Pernaute, B., Pinto-Carnide, O., Benito, C. 2005. Secale cereale inter-microsatellites (SCIMs): chromosomal location and genetic inheritance. Genetica 123:303–311.CrossRefGoogle Scholar
  11. Camargo, C.E.O. 1981. Wheat improvement. I. The heritability of tolerance to aluminum toxicity. Bragantia 40:33–45.CrossRefGoogle Scholar
  12. Carver, B.F., Ownby, J.D. 1995. Acid soil tolerance in wheat. Adv. Agron. 54:117–173.CrossRefGoogle Scholar
  13. Cosic, T., Poljak, M., Custic, M., Rengel, Z. 1994. Aluminium tolerance of durum wheat germplasm. Euphytica 78:239–243.CrossRefGoogle Scholar
  14. Foy, C.D. 1983. Plant adaptation to mineral stress in problem soils. Iowa State J. Res. 57:339–354.Google Scholar
  15. Foy, C.D., Lafever, H.N., Schwartz, J.W., Fleming, A.L. 1974. Aluminum tolerance of wheat cultivars related to region of origin. Agron. J. 66:751–758.CrossRefGoogle Scholar
  16. Gallego, F.J., Benito, C. 1997. Genetic control of aluminium tolerance in rye. Theor. Appl. Genet. 95:393–399.CrossRefGoogle Scholar
  17. Gallego, F.J., Callos, B., Benito, C. 1998. Molecular markers linked to the aluminium tolerance genes Alt1 in rye (Secale cereale L.). Theor. Appl. Genet. 97:1104–1109.CrossRefGoogle Scholar
  18. Guedes-Pinto, H., Pinto-Carnide, O., Igrejas, G., Nascimento, M., Carnide, V.P., Heslop-Harrison, J.S., Gateau, I., Branlard, G. 1998. Studies of Barbela wheat, an old Portuguese landrace with rye introgression. In: Lelley, T. (ed.), Current Topics in Plant Cytogenetics Related to Plant Improvement. Univ-Ver., Wien, pp. 175–181.Google Scholar
  19. Kim, B.Y., Baier, A.C., Somers, D.J., Gustafson, J.P. 2001. Aluminum tolerance in triticale, wheat and rye. Euphytica 120:329–337.CrossRefGoogle Scholar
  20. Kochian, L.V. 1995. Cellular mechanisms of aluminium toxicity and resistance in plants. Annu. Ver. Plant Physiol. Plant Mol. Biol. 46:237–260.CrossRefGoogle Scholar
  21. Luo, M.C., Dvorák, J. 1996. Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese spring wheat. Euphytica 91:31–35.CrossRefGoogle Scholar
  22. Matos, M., Camacho, M.V., Pérez-Flores, V., Pernaute, B., Pinto-Carnide, O., Benito, C. 2005. Anew aluminum tolerance gene located on rye chromosome arm 7RS. Theor. Appl. Genet. 111:360–369.CrossRefGoogle Scholar
  23. Miftahudin, G., Chikmawati, T., Ross, K., Scoles, J., Gustafson, J.P. 2005. Targeting the aluminium tolerance gene Alt3 region in rye using rice/rye micro-colinearity. Theor. Appl. Genet. 110:906–913.CrossRefGoogle Scholar
  24. Niana, H., Yang, Z.M., Ahn, S.J., Cheng, Z.J., Matsumoto, H. 2002. A comparative study on the aluminium- and copper-induced organic acid exudation from wheat roots. Physiol. Plant. 116:328–335.CrossRefGoogle Scholar
  25. Papernik, E.A., Bethea, A.S., Singleton, T.E., Magalhães, J.V., Garvin, D.F., Kochian, L.V. 2001. Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat. Planta 212:829–834.CrossRefGoogle Scholar
  26. Pinto-Carnide, O., Guedes-Pinto, H. 1999. Aluminum tolerance variability in rye and wheat Portuguese germplasm. Gen. Res. Crop Evol. 46:81–85.CrossRefGoogle Scholar
  27. Ribeiro-Carvalho, C., Guedes-Pinto, H., Harrison, G., Heslop-Harrison, J.S. 1997. Wheat-rye chromosome translocations involving small terminal and intercalary rye chromosome segments in the Portuguese wheat landrace Barbela. Heredity 78:539–546.CrossRefGoogle Scholar
  28. Riede, C.R., Anderson, J.A. 1996. Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci. 36:905–909.CrossRefGoogle Scholar
  29. Scott, B.J., Fisher, J.A. 1989. Selection of genotypes tolerant of aluminium and manganese. In: Robson, A.D. (ed.), Soil Acidity and Plant Growth. Academic Press, Australia, pp. 167–203.CrossRefGoogle Scholar
  30. Silva, J.P., Reboredo, F., Guedes-Pinto. H., Mello-Sampayo, T. 1991. Barbela, a bread wheat cultivar tolerant to aluminum. Brotéria-Genética 1–2:65–68.Google Scholar
  31. Slootmaker, L.A.J. 1974. Tolerance to high soil acidity in wheat related species, rye and triticale. Euphytica 23:505–513.CrossRefGoogle Scholar
  32. Tagaki, H., Namai, H., Murakami, K. 1983. Exploration of aluminum tolerant genes in wheat. In: Proceedings 6th International Wheat Genetic Symposium, Kyoto, Japan, pp. 143–146.Google Scholar
  33. Tang, Y., Sorrells, M.E., Kochain, L.V., Garvin, D.F. 2000. Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Crop Sci. 40:778–782.CrossRefGoogle Scholar
  34. Vasconcelos, J.C. 1933. Trigos Portugueses ou de há muito cultivados no país. Boletim de Agricultura, Year I, n o 1–2, Serie I, Lisbon, p. 150.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  1. 1.Institute of Biotechnology and Bioengineering, Centre of Genetics and BiotechnologyUniversity of Trás-os-Montes and Alto Douro (IBB/CGB-UTAD)Vila RealPortugal
  2. 2.National Plant Breeding StationElvasPortugal

Personalised recommendations