Genetic diversity of Aegilops crassa and its relationship with Aegilops tauschii and the D genome of wheat

Abstract

Simple sequence repeat (SSR) DNA markers were used to characterize the genetic diversity in 70 accessions of Aegilops crassa from Iran as well as to determine relationships among these accessions with 9 accessions of Aegilops tauschii (subsp. tauschii and strangulata) and 5 Triticum aestivum landraces. All twenty SSR primer pairs were polymorphic and identified a total number of 149 alleles corresponding to an average of 7.5 alleles per locus. The highest and lowest PIC values were obtained in subsp. strangulata and Ae. crassa accessions, respectively. Data obtained were used to estimate genetic similarity using the Dice coefficient, and dendrogram was constructed using the UPGMA method. The dendrogram separated the 84 accessions into two main groups. All species grouped according to their genomes. A good level of genetic diversity was observed in the accessions of Ae. crassa, even in geographically close regions, which can be used in the broadening of the genetic base of bread wheat. In addition, T. aestivum and subsp. tauschii were clustered further away from Ae. crassa, confirming probably chromosomal rearrangements in the Dgenome of Ae. crassa during the processes of evolution.

References

  1. Appels, R., Lagudah, E.S. 1990. Manipulation of chromosomal segments from wild wheat for the improvement of bread wheat. Aust. J. Plant Physiol. 17:253–266.

    Google Scholar 

  2. Badaeva, E.D., Friebe, B., Zoshchuk, S.A., Zelenin, A.V., Gill, B.S. 1998. Molecular cytogenetic analysis of tetraploid and hexaploid Aegilops crassa. Chromosome Res. 6:629–637.

    CAS  Article  Google Scholar 

  3. Badaeva, E.D., Amosova, A.V., Muravenko, O.V., Samatadze, T.E., Chikida, N.N., Zelenin, A.V., Friebe, B., Gill, B.S. 2002. Genome differentiation in Aegilops. 3. Evolution of the D genome cluster. Plant Syst. Evol. 231:163–190.

    CAS  Article  Google Scholar 

  4. Cadalen, T., Boeuf, C., Bernard, S., Bernard, M. 1997. An intervarietal molecular marker map in Triticum aestivum L. Em. Thell. and comparison with a map from a wide cross. Theor. Appl. Genet. 94:367–377.

    CAS  Article  Google Scholar 

  5. Dreisigacker, S., Kishii, M., Lage, J., Warburton, M. 2008. Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust. J. Agr. Res. 59:413–420.

    Article  Google Scholar 

  6. Dvorak, J., Luo, M.C., Yang, Z.L., Zhang, H.B. 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97:657–670.

    CAS  Article  Google Scholar 

  7. Eig, A. 1929. Monographisch-kritische Übersicht der Gattung Aegilops. Feddes Rep. 55:1–228.

    Google Scholar 

  8. Guyomarc’h, H., Sourdille, P., Charmet, G., Edwards, K.J., Bernard, M. 2002. Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor. Appl. Genet. 104:1164–1172.

    Article  Google Scholar 

  9. Halloran, G.M., Ogbonnaya, F.C., Lagudah, E.S. 2008. Triticum (Aegilops) tauschii in the natural and artificial synthesis of hexaploid wheat. Aust. J. Agr. Res. 59:475–490.

    Article  Google Scholar 

  10. Hegde, S.G., Valkoun, J., Waines, J.G. 2002. Genetic diversity in wild and weedy Aegilops, Amblyopyrum, and Secale species — a preliminary survey. Crop Sci. 42:608–614.

    CAS  Google Scholar 

  11. Kihara, H., Yamashita, K., Tanaka, M., Sakamoto, S. 1957. Geographical distribution of 4× and 6× forms of Aegilops crassa. Wheat Info. Serv. 5:11–12.

    Google Scholar 

  12. Lelley, T., Stachel, M., Grausgruber, H., Vollmann, J. 2000. Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668.

    CAS  Article  Google Scholar 

  13. Liu, C.G., Wu, Y.W., Hou, H., Zhang, C., Zhang, Y. 2002. Value and utilization of alloplasmic common wheats with Aegilops crassa cytoplasm. Plant Breeding 121:407–410.

    Article  Google Scholar 

  14. McFadden, E.S., Sears, E.R. 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37:81–89.

    Article  Google Scholar 

  15. Medini, M., Hamza, S., Rebai, A., Baum, M. 2005. Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Genet. Resour. Crop Evol. 52:21–31.

    CAS  Article  Google Scholar 

  16. Murai, K., Tsunewaki, K. 1993. Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica 67:41–48.

    Article  Google Scholar 

  17. Naghavi, M.R., Mardi, M., Pirseyedi, S.M., Tabatabaei, S.F. 2008. Evaluation of genetic diversity in the subspecies of Aegilops tauschii using microsatellite markers. Cereal Res. Comm. 36:21–31.

    CAS  Article  Google Scholar 

  18. Nei, M., Li, W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76:5269–5273.

    CAS  Article  Google Scholar 

  19. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2:225–238.

    CAS  Article  Google Scholar 

  20. Ranjbar, M., Naghavi, M.R., Zali, A., Aghaei, M.J. 2007. Multivariate analysis of morphological variation in accessions of Aegilops crassa from Iran. Pakistan J. Biol. Sci. 10:1126–1129.

    CAS  Article  Google Scholar 

  21. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.

    PubMed  PubMed Central  Google Scholar 

  22. Rohlf, F.J. 1998. NTSYS-pc numerical taxonomy and multivariate analysis system, version 2.02. Exeter Software, Setauket, NY.

    Google Scholar 

  23. Saghai-Maroof, M.A., Soliman, K., Jorgensen, R.A. Allard, R.W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81:8014–8018.

    CAS  Article  Google Scholar 

  24. Sarkar, P., Stebbins, G.L. 1956. Morphological evidence concerning the origin of the B genome in wheat. Am. J. Bot. 43:297–304.

    Article  Google Scholar 

  25. van Slageren, M.W. 1994. Wild Wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University Papers V.7. 513 pp.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. R. Naghavi.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Naghavi, M.R., Ranjbar, M., Zali, A. et al. Genetic diversity of Aegilops crassa and its relationship with Aegilops tauschii and the D genome of wheat. CEREAL RESEARCH COMMUNICATIONS 37, 159–167 (2009). https://doi.org/10.1556/CRC.37.2009.2.2

Download citation

Keywords

  • alien gene transfer
  • SSR
  • wheat synthetics