Advertisement

Cereal Research Communications

, Volume 37, Issue 2, pp 255–259 | Cite as

Anther culture response of Triticum durum × T. monococcum ssp. aegilopoides amphiploid

  • D. Plamenov
  • I. Belchev
  • P. SpetsovEmail author
Open Access
Breeding

Abstract

Two durum wheat varieties, Saturn-1 and Neptun-2, were used in the production of Triticum durum × Triticum monococcum ssp. aegilopoides amphiploid (AABBA m A m), thus generating two amphiploid lines, designated A1 and A2, respectively. Anther culture response was studied involving callus induction, plant regeneration, albino- and green plants produced. The wild wheat parent did not respond to any of the parameters studied while the tetraploid wheats yielded only albino plants. Amphiploid lines differed in between for plant regeneration ability and produced albino and green plants, ranging from 1.9–3.2 and 0.4–0.8 per 100 plated anthers, respectively. Thus, the lines reacted equally in androgenesis for green plant yields and might be of use in the haploid wheat production.

Keywords

Triticum monococcum ssp. aegilopoides T. durum amphiploid anther culture response 

References

  1. Barro, F., Canalejo, A., Martín, A. 1999. Genomic influence on somatic embryogenesis in the Triticeae. Plant Cell Reports 18:769–772.CrossRefGoogle Scholar
  2. Belchev, I., Kostov, K., Schlegel, R., Ivanov, P., Tsenov, N., Stavreva, N. 2000. Anther culture response of wheat (Triticum aestivum L.) varieties from Eastern Europe. Bulg. J. Agr. Sci. 6:499–506.Google Scholar
  3. Chuang, C.C., Ouyang, T.W., Chia, H., Chou, S.M., Ching, C.K. 1978. A set of potato media for wheat anther culture. In: Proc. Symp. Plant Tissue Culture. Science Press, Beijing, pp. 51–56.Google Scholar
  4. Deaton, W.R., Metz, S.G., Armstrong, T.A., Mascia, P.N. 1987. Genetic analysis of the anther-culture response of three spring wheat crosses. Theor. Appl. Genet. 74:334–338.CrossRefGoogle Scholar
  5. Gill, R.S., Dhaliwal, H.S., Multani, D.S. 1988. Synthesis and evaluation of Triticum durumT. monococcum amphiploids. Theor. Appl. Genet. 75:912–916.CrossRefGoogle Scholar
  6. Goncharov, N.P., Bannikova, S.V., Kawahara, T. 2007. Wheat artificial amphiploids involving the Triticum timopheevii genome: Their studies, preservation and reproduction. Genet. Resour. Crop Evol. 54:1507–1516.CrossRefGoogle Scholar
  7. Guo, Y., Mizukami, Y., Yamada, T. 2005. Genetic characterization of androgenic progeny derived from Lolium perenne × Festuca pratensis cultivars. New Phytologist 166:455–464.CrossRefGoogle Scholar
  8. Guzy-Wróbelska, J., Labocha-Pawlowska, A., Kwasniewski, M., Szarejko, I. 2007. Different recombination frequencies in wheat doubled haploid populations obtained through maize pollination and anther culture. Euphytica 156:173–183.CrossRefGoogle Scholar
  9. Hussien, T., Bowden, R.L., Gill, B.S., Cox, T.S. 1998. Chromosomal locations in common wheat of three new leaf rust resistance genes from Triticum monococcum. Euphytica 101:127–131.CrossRefGoogle Scholar
  10. Leśniewska, A., Ponitka, A., Ślusarkiewicz-Jarzina, A., Zwierzykowska, E., Zwierzykowski, Z., James, A.R., Thomas, H., Humphreys, M.W. 2001. Androgenesis from Festuca pratensis × Lolium multiflorum amphidiploid cultivars in order to select and stabilize rare gene combinations for grass breeding. Heredity 86:167–176.CrossRefGoogle Scholar
  11. Loschenberger, F., Hansel, H., Heberle-Bors, E. 1993. Plant formation from pollen of tetraploid wheat species and Triticum tauschii. Cereal Res. Comm. 21:133–139.Google Scholar
  12. Ma, H., Singh, R.P., Mujeeb-Kazi, A. 1997. Resistance to stripe rust in durum wheats, A-genome diploids, and their amphiploids. Euphytica 94:279–286.CrossRefGoogle Scholar
  13. Mentewab, A.B., Lazarevich, S.V., Souvre, A., Sarrafi, A. 1997. Androgenic ability of different Triticum species. J. Genet. & Breed. 51:109–113.Google Scholar
  14. Multani, D.S., Dhaliwal, H.S., Singh, P., Gill, K.S. 1988. Synthetic amphiploids of wheat as a source of resistance to Karnal bunt (Neovossia indica). Plant Breeding 101:122–125.CrossRefGoogle Scholar
  15. Paull, J.G., Pallotta, M.A., Langridge, P., The, T.T. 1994. RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid Triticum boeoticum. Theor. Appl. Genet. 89:1039–1045.CrossRefGoogle Scholar
  16. Ponitka, A., Ślusarkiewicz-Jarzina, A., Wojciechowska, B. 2002. Production of haploids and doubled haploids of the amphiploids Aegilops variabilis × Secale cereale. Cereal Res. Comm. 30:39–45.Google Scholar
  17. Rogers, W.J., Miller, T.E., Payne, P.I., Seekings, J.A., Sayers, E.J., Holt, L.M., Law, C.N. 1997. Introduction to bread wheat (Triticum aestivum L.) and assessment for bread-making quality of alleles from T. boeoticum Boiss. ssp. thaoudar at Glu-A1 encoding two high-molecular-weight subunits of glutenin. Euphytica 93:19–29.CrossRefGoogle Scholar
  18. Shi, A.N., Leath, S., Murphy, J.P. 1998. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88:144–147.CrossRefGoogle Scholar
  19. Sodkiewicz, W., Strzembicka, A. 2004. Application of Triticum monococcum for the improvement of triticale resistance to leaf rust (Puccinia triticina). Plant Breeding 123:39–42.CrossRefGoogle Scholar
  20. Spetsov, P., Savov, M. 1992. A review on amphiploids in the Triticeae, obtained in Bulgaria during 1950–1990. Wheat Inf. Serv. 75:1–6.Google Scholar
  21. Spetsov, P., Plamenov, D., Kiryakova, V. 2006. Distribution and characterization of Aegilops and Triticum species from the Bulgarian Black Sea coast. Central Europ. J. Biol. 1:399–411.Google Scholar
  22. Tersi, M., Xynias, I.N., Gouli-Vavdinoudi, E., Roupakias, D. 2005. Effect of genome, induction medium and temperature pretreatment on green plant production in durum (Triticum turgidum var. durum) × bread wheat (Triticum aestivum L. em Thell) crosses. Acta Physiologiae Plantarum 27:641–649.CrossRefGoogle Scholar
  23. Zamani, I., Gouli-Vavdinoudi, E., Kovacs, G., Xynias, I., Roupakias, D., Barnabas, B. 2003. Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F 1 hybrids. Plant Breeding 122:314–317.CrossRefGoogle Scholar
  24. Zhuang, J.J., Jia, X. 1983. Increasing differentiation frequencies in wheat pollen callus. In: Hu, H., Vega, M.R. (eds), Cell and Tissue Culture Techniques for Cereal Crop Improvement. Science Press, Beijing, p. 431.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of EcologyTechnical UniversityVarnaBulgaria
  2. 2.Dobroudja Agricultural InstituteGeneral ToshevoBulgaria

Personalised recommendations