Advertisement

Cereal Research Communications

, Volume 37, Issue 2, pp 249–254 | Cite as

Maize varieties suitable for the production of biogas

Quality and Utilization

Abstract

The aboveground parts, grain yield, dry matter and water content of the silage maize varieties Bermasil (early) and Mv MSC 485 (mid-season) and the grain maize varieties Mv To 286 (early) and NKPX 9283 (mid-season) were analysed to determine how these traits should be modified to develop a variety type more suitable for the production of bioenergy, more particularly biogas.

It was established that silage maize types are generally taller, with larger tassels, leaves, cobs and stalk mass below the ear, making them suitable for biogas production. It is important to note, however, that the grain yield of these varieties should not be ignored, as it makes up 40–50% of the total aboveground dry matter yield.

As one of the earliest maturing varieties, the silage maize variety Bermasil could be suitable in itself for biogas production. Based on the present and earlier data, it can be concluded that varieties with later maturity dates than those generally used for silage production could also be suitable for biogas production, provided they reliably reach the “half milk line” stage of maturity and a grain moisture content of around 42% every year in the given environment.

Keywords

maize grain moisture drying biogas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berzsenyi, Z., Lap, D.Q. 2006a. A növényszám hatásának vizsgálata különböző tenyészidejű hibridek vegetatív és reproduktív szerveinek növekedésére Richards függvénnyel [Use of Richard function to analyze the effect of plant density on the growth of vegetative and reproductive organs in maize (Zea mays L.)]. Növénytermelés 55:3–4.Google Scholar
  2. Berzsenyi, Z., Lap, D.Q. 2006b. A növényszám hatásának vizsgálata a kukorica (Zea mays L.) hibridek növekedésére Richards függvénnyel [Richard function to analyze the effect of the plant density and plant growth (Zea mays L.)]. Növénytermelés 55:87–102.Google Scholar
  3. Brown, B.A. 1962. Silage corn experiments. Connecticut Coll. Agric. Exp. Sta. Bull. 373.Google Scholar
  4. Clark, N.A., Hernken, R.W., Vandessall, I.H. 1973. Effect of maturity group, ripening span, and planting rate on yield, ear-stover ratio, and dry matter of corn harvested for silage. Maryland Agr. Exp. Sta. Bull. 490.Google Scholar
  5. Gunn, R.E., Christensen, R. 1965. Maturity relationships among early to late hybrids of corn (Zea mays L.). Crop Sci. 5:299–302.Google Scholar
  6. Hadi, G. 1982. A kukoricaszemek telítődése és vízleadása (Grain filling and drying down in maize). M.Sc. Thesis, Martonvásár, 123 pp.Google Scholar
  7. Hadi, G. 1983a. Dvukhperemennye korrelyatsii mezhdu skorost’yu otdachi vody i nekotorymi priznakami kukuruzy (Correlations beetwen plant traits influencing drying down rate of maize). Informatsionnyi Byulleten’ po Kukuruze 2:59–65.Google Scholar
  8. Hadi, G. 1983b. Otsenka nekotorykh rastitel’nykh priznakov vlüaiushehik na otdachu vody v raznykh stadiiah sozrevaniya (Evaluation of the effect of plant traits on drying down of maize in various phases of ripening). Informatsionnyi Byulleten’ po Kukuruze (KGST, Martonvásár) 2:61–65.Google Scholar
  9. Hadi, G. 2004. Effect of the length of the kernel filling period and the kernel filling rate on the grain yield of maize under different water supply conditions. Cereal Res. Comm. 32:465–470.Google Scholar
  10. Hadi, G., Szundy, T. 1985. Gyors vízleadó kukorica hibridek nemesítése és honosítása (Breeding and introduction of fast drying down hybrids). Martonvásár, 16 pp.Google Scholar
  11. Hadi, G., Szundy, T. 1988. Otsenka rastitelnykh svoystv pri selektsii gibridov, ubrannykh pri nizkoy vlazhnosti (Evaluation of plant traits for the breeding of hibrids with low grain moisture content at harvest). Informatsionnyi Byulleten’ po Kukuruze 7:27–42.Google Scholar
  12. Hadi, G., Szundy, T. 1990. Az optimális betakarítási időtartam felmérése a teljes növényi zúzalék alapanyagát képező néhány kukorica hibrid vízleadása alapján (Calculation of the optimum harvesting period based on the drying down of maize hybrids used as the basic material for chopped whole plant mix). Martonvásár, 168 pp.Google Scholar
  13. Hopper, T.H. 1925. Composition and maturity of corn. N. Dakota Agr. Exp. Sta. Bull. 192.Google Scholar
  14. Marton, L.C., Kálmán, L., Árendás, T., Bónis, P., Szieberth, D. 2007. Comparison of some methods for estimating vegetation periods in maize. Acta Agron. Hung. 55:1–5.CrossRefGoogle Scholar
  15. Nevens, W.B., Harshbarger, K.E., Touchberry, R.W., Duncan, G.H. 1954. The ear and leaf-stalk contents of corn forage as factors in silage evaluation. I. Dairy Sci. 37:1088.CrossRefGoogle Scholar
  16. Rutger, I.N. 1969. Relationship of corn silage yields to maturity. Agron. J. 61:68–70.CrossRefGoogle Scholar
  17. Sheldrick, R.D. 1979. Growing maize for silage. In: Banting, E.S. (ed.), Special Edition for Euromais 79. Information Leaflet No. 6.Google Scholar
  18. White, R.P., Winter, K.A. 1979. Effect of harvest date on yield, dry matter content, plant nutrient content and in-vitro digestibility of various parts of forage maize plants in a short season environment. In: Banting, E.S. (ed.), Special Edition for Euromais 79. Information Leaflet No. 6.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations