Cereal Research Communications

, Volume 37, Issue 2, pp 243–248 | Cite as

Development and gluten strength evaluation of introgression lines of Triticum urartu in durum wheat

  • J. B. AlvarezEmail author
  • L. Caballero
  • S. Nadal
  • M. C. Ramírez
  • A. Martín
Quality and Utilization


Triticum urartu has been identified as donor of A genome in the polyploid wheats. An amphiploid derived from the cross between one accession of T. urartu, carrying 1Ax + Ay high-molecular-weight glutenin subunits, and durum wheat cv. Yavaros has been synthesised and used as a bridge species to transfer genetic material from the wild to the cultivated wheat. Some quality traits were evaluated in twenty durum lines derived from this amphiploid after backcrossing to durum. All lines were selected for the presence of 1Ax + Ay but maintaining two different patterns for the low-molecular-weight glutenin subunits and grain colour. The lines with red grain showed higher pigment content than those with yellow grain. In addition, the former lines present higher gluten strength than the latter ones.


amphyploidy durum wheat gluten strength glutenin grain colour pleiotropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, J.B., Martín, A., Martín, L.M. 2001. Variation in the high molecular weight glutenin subunits coded at the Glu-Hch1 locus in Hordeum chilense. Theor. Appl. Genet. 102: 134–137.CrossRefGoogle Scholar
  2. Carrillo, J.M., Vazquez, J.F., Orellana, J. 1990. Relationship between gluten strength and glutenin proteins in durum wheat cultivars. Plant Breed. 104: 325–333.CrossRefGoogle Scholar
  3. Ciaffi, M., Lafiandra, D., Porceddu, E., Benedettelli, S. 1993. Storage-protein variation in wild emmer wheat (Triticum turgidum ssp. dicoccoides) form Jordan and Turkey. I. Electrophoretic characterization of genotypes. Theor. Appl. Genet. 86: 474–480.CrossRefGoogle Scholar
  4. Dvorak, J., McGuire, P.E., Cassidy, B. 1988. Apparent source of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome. 30: 680–689.CrossRefGoogle Scholar
  5. Freed, R.D., Everson, E.H., Ringlund, K., Gullord, M. 1976. Seed color in wheat and the relationship to seed dormancy at maturity. Cereal Res. Comm. 4: 147–149.Google Scholar
  6. Halverson, J., Zeleny, L. 1988. Criteria of wheat quality. In: Pomeranz, Y. (ed.), Wheat: Chemistry and Technology, Vol. I. American Association of Cereal Chemists, St. Paul, MN, pp. 14–45.Google Scholar
  7. Harberd, N.P., Bartels, D., Thompson, R.D. 1986. DNA restriction fragment variation in the gene family encoding high-molecular-weight (HMW) glutenin subunits of wheat. Biochem. Genet. 24: 579–596.CrossRefGoogle Scholar
  8. Johnson, B.L. 1975. Identification of the apparent B-genome donor of wheat. Can. J. Genet. Cytol. 17: 21–39.CrossRefGoogle Scholar
  9. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680–685.CrossRefGoogle Scholar
  10. Miller, T.E. 1987. Systematic and evolution. In: Lupton, F.G.H. (ed.), Wheat Breeding: Its Scientific Basis. Chapman & Hall, London, pp. 1–30.Google Scholar
  11. Payne, P.I. 1987. Genetics of wheat storage proteins and the effects of allelic variation on bread-making quality. Ann. Rev. Plant Physiol. 38:141–153.CrossRefGoogle Scholar
  12. Peña, R.J., Zarco-Hernandez, J., Amaya-Celis, A., Mujeeb-Kazi, A. 1994. Relationships between chromosome 1B-encoded glutenin subunit compositions and breadmaking quality characteristics of some durum wheat (Triticum turgidum) cultivars. J. Cereal Sci. 19: 243–249.CrossRefGoogle Scholar
  13. Pogna, N.E., Autran, J.C., Mellini, F., Lafiandra, D., Feillet, P. 1990. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. J. Cereal Sci. 11: 15–34.CrossRefGoogle Scholar
  14. Waines, J.G., Payne, P.I. 1987. Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theor. Appl. Genet. 74: 71–76.CrossRefGoogle Scholar
  15. Williams, P., El-Haramein, F.J., Nakkoul, H., Rihawi, S. 1988. Crop Quality Evaluation. Methods and Guidelines. Technical Manual n1 14. ICARDA. Aleppo, Syria.Google Scholar
  16. Wrigley, C., Bekes, F., Bushuk, W. (eds) 2006. Gliadin and Glutenin: The Unique Balance of Wheat Quality. AACC International Press, St. Paul, MN, USA.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • J. B. Alvarez
    • 1
    Email author
  • L. Caballero
    • 1
  • S. Nadal
    • 2
  • M. C. Ramírez
    • 3
  • A. Martín
    • 3
  1. 1.Departamento de Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Edificio Gregor Mendel, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
  2. 2.IFAPA, CIFA Alameda ObispoArea Mejora & BiotecnolCórdobaSpain
  3. 3.Instituto de Agricultura SostenibleConsejo Superior de Investigaciones CientíficasCórdobaSpain

Personalised recommendations