Advertisement

Cereal Research Communications

, Volume 37, Issue 1, pp 75–82 | Cite as

Identification of Novel ω -gliadin Gene in Aegilops tauschii Using RFLP

  • M. E. HassaniEmail author
  • M. R. Naghavi
  • M. R. Shariflou
  • P. J. Sharp
Quality and Utilization

Abstract

A RFLP approach was used to investigate polymorphism of ω -gliadin genes in Ae. tauschii using a F 2 population from the cross of accessions AUS18913 and CPI110856. A set of 150 F 2 progenies was genotyped by acid polyacrylamide gel electrophoresis (A-PAGE) and only one recombinant line of Gli-Dt1/Gli-DtT1 was observed. Twelve restriction enzymes were initially tested on genomic DNA of the two parents of which four restriction enzymes revealed polymorphism. Of these four, only Dra I was associated with the novel ω -gliadin gene (T 1) using a 1,200 bp DNA fragment of a ω -gliadin gene as a gene-specific probe. The ω -gliadin gene (T 1) may be of interest for further studies relating storage proteins and wheat bread-making quality.

Keywords

RFLP ω -gliadin genes A-PAGE Ae. tauschii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, A.M. 1994. Molecular and functional studies of variant high molecular weight glutenins in the D genome of wheat. PhD Thesis, University of Sydney, NSW, Australia.Google Scholar
  2. Cotol, V., Bartels, D., Thompson, R., Flavell, R. 1989. Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barely prolamin genes. Mol. Gen. Genet. 216:81–90.CrossRefGoogle Scholar
  3. Dachkevitch, T., Redaelli, R., Biancardi, A.M., Metakovsky, E.V., Pogna, N.E. 1993. Genetics of gliadins coded by the group 1 chromosomes in the high-quality bread wheat cultivar Neepawa. Theor. Appl. Genet. 86:389–399.CrossRefGoogle Scholar
  4. D’Ovidio, R., Tanzarella, O.A., Porceddu, E. 1991. Cloning and sequencing of a PCR amplified gamma-gliadin gene from durum wheat (Triticum turgidum L. Tell. Conv. Durum (Desf. (MK.). Plant Sci. 75:229–236.Google Scholar
  5. Feinberg, A.P., Vogelstein, B. 1983. A technique for radio-labelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.CrossRefGoogle Scholar
  6. Galili, G., Feldman, M. 1984. Mapping of glutenin and gliadin genes located on chromosome 1B of common wheat. Mol. Gen. Genet. 193:293–298.CrossRefGoogle Scholar
  7. Gianibelli, M.C., Lagudah, E.S., Wrigley, C.W., MacRitchie, F. 2002. Biochemical and genetic characterization of a monomeric storage protein (T 1) with an unusually high molecular weight in Triticum tauschii. Theor. Appl. Genet. 104:497–504.CrossRefGoogle Scholar
  8. Hassani, M.E., Shariflou, M.R., Gianibelli, M.C., Sharp, P.J. 2006. Gli-DtT1 and a novel ω -gliadin gene in Aegilops tauschii. Plant Breed. 125:27–31.CrossRefGoogle Scholar
  9. Hassani, M.E., Shariflou, M.R., Gianibelli, M.C., Sharp, P.J. 2008. Characterization of ω -gliadin gene in Triticum tauschii. J. Cereal Sci. 47:59–67.CrossRefGoogle Scholar
  10. Hsia, C.C., Anderson, O.D. 2001. Isolation and characterization of wheat ω -gliadin genes. Theor. Appl. Genet. 103:37–44.CrossRefGoogle Scholar
  11. Kasarda, D.D., Autran, J.C., Lew, E.J.-L., Nimmo, C.C., Shewry, P.R. 1983. N-terminal amino acid sequences of ω -gliadins and ω -secalins; Implications for the evolution of prolamin genes. Biochim. Biophys. Acta 747:138–150.CrossRefGoogle Scholar
  12. Masci, S., Egorov, T.A., Ronchi, C., Kuzmicky, D.D., Kasarda, D.D., Lafiandra, D. 1999. Evidence for the presence of only one cysteine residue in the D-type low molecular weight subunits of wheat glutenin. J. Cereal Sci. 29:17–25.CrossRefGoogle Scholar
  13. Masoudi-Nejad, A., Nasuda, S., Kawabe, A., Endo, T.R. 2002. Molecular cloning, sequencing, and chromosome mapping of a 1A-encoded ω -type prolamin sequence from wheat. Genome 45:661–669.CrossRefGoogle Scholar
  14. Metakovsky, E.V., Chernakov, V.M., Upelniek, V.P., Redaelli, R., Dardevet, M., Branlard, G., Pogna, N.E. 1996. Recombination mapping of minor omega-gliadin-coding loci on chromosome 1A of common wheat: a revision. J. Genet. Breed. 50:277–286.Google Scholar
  15. Metakovsky, E.V., Akhmedov, M.G., Sozinov, A.A. 1986. Genetic analysis of gliadin-coding genes reveals gene clusters as well as single remote genes. Theor. Appl. Genet. 73:278–285.CrossRefGoogle Scholar
  16. Okita, T.W., Cheesbrough, V., Reeves, C.D. 1985. Evolution and heterogeneity of the α -/β -type and γ -type gliadin DNA sequences. J. Biol. Chem. 260:8203–8213.PubMedGoogle Scholar
  17. Payne, P.I., Holt, L.M., Lawrence, G.J., Law, C.N. 1982. The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm. Qual. Plant. Plant Foods Hum. Nutr. 31:229–241.CrossRefGoogle Scholar
  18. Pogna, N.E., Metakovsky, E.V., Redaelli, R., Raineri, F., Dachkevitch, T. 1993. Recombination mapping of Gli-5, a new gliadin-coding locus on chromosomes 1A and 1B in common wheat. Theor. Appl. Genet. 87:113–121.CrossRefGoogle Scholar
  19. Pogna, N.E., Metakovsky, E., Redaelli, R., Dachkevitch, T., Cernakov, V.M. 1995. The group 1 chromosomes of wheat contain several loci coding for gliadins. In: Li, Z.S., Xin, Z.Y. (eds), Proceedings of the 8 th International Wheat Genetics Symposium. China Agriculture Scientech Press, Beijing, China. pp. 137–140.Google Scholar
  20. Reddy, P., Appels, R. 1993. Analysis of a genomic DNA segment carrying the wheat high molecular weight (HMW) glutenin Bx17 subunit and it use as an RFLP marker. Theor. Appl. Genet. 85:616–624.CrossRefGoogle Scholar
  21. Rodriguez-Quijano, M., Garrillo, J.M. 1996. Linkage map of prolamin loci Gli-D4 and Gli-D5 in hexaploid wheat. Plant Breed. 115:189–191.CrossRefGoogle Scholar
  22. Sharp, P.J., Kreis, M., Shewry, P.R., Gale, M.D. 1988. Location of β -amylase sequences in wheat and its relatives. Theor. Appl. Genet. 75:289–290.CrossRefGoogle Scholar
  23. Shewry, P.R., Autran, J.C., Nimmo, C.C., Ellen, J.L.L., Kasarda, D.D. 1980. N-terminal amino acid sequence homology of storage protein components from barley and a diploid wheat. Nature 286: 520–522.CrossRefGoogle Scholar
  24. Shewry, P.R., Halford, N.G., Tatham, A.S. 1989. The high molecular weight subunits of wheat, barley and rye: genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. In: Miflin, B.J. (ed.), Oxford Surveys of Plant and Molecular Cell Biology, Oxford University Press, London 6:163–219.Google Scholar
  25. Sobko, T.A. 1984. Identification of a new locus which controls the synthesis of alcohol-soluble protein in the endosperm of winter common wheat. J. Agric. Sci. 7:78–80.Google Scholar
  26. Sozinov, A.A., Poperelya, F.A. 1980. Genetic classification of prolamines and its use for plant breeding. Ann. Technol. Agric. 29:229–245.Google Scholar
  27. Spielmeyer, W., Moullet, O., Laroche, A., Lagudah, E.S. 2000. Highly recombinogenic regions at seed storage protein loci on chromosome 1DS of Aegilops tauschii, the D-genome donor of wheat. Genetics 155:361–367.PubMedPubMedCentralGoogle Scholar
  28. Tkachuk, R., Mellish, J. 1980. Wheat cultivar identification by gel high voltage gel electrophoresis. Ann. Technol. Agric. 29:207–212.Google Scholar
  29. Vaccino, P., Metakovsky, E.V. 1995. RFLP patterns of gliadin alleles in Triticum aestivum L.: implications for analysis of the organization and evolution of complex loci. Theor. Appl. Genet. 90:173–181.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • M. E. Hassani
    • 1
    • 2
    • 3
    Email author
  • M. R. Naghavi
    • 4
  • M. R. Shariflou
    • 2
    • 3
  • P. J. Sharp
    • 2
    • 3
  1. 1.Department of Horticultural Science, Agricultural CollegeUniversity of TehranKarajIran
  2. 2.Plant Breeding InstituteThe University of SydneyCamdenAustralia
  3. 3.Value Added Wheat CRC LimitedNorth RydeAustralia
  4. 4.Agronomy and Plant Breeding Department, Agricultural CollegeUniversity of TehranKarajIran

Personalised recommendations