Cereal Research Communications

, Volume 37, Issue 1, pp 45–55 | Cite as

Antimutagenic and Radical Scavenging Activity of Wheat Bran

  • L. BrindzováEmail author
  • M. Zalibera
  • T. Jakubík
  • M. Mikulášová
  • M. Takácsová
  • S. Mošovská
  • P. Rapta
Quality and Utilization


This study examined the mutagenic, antimutagenic and antioxidant activities of the DMSO extracts from the wheat bran. Wheat bran extracts showed no genotoxicity toward Salmonella typhimurium TA98, TA100 and TA102 with or without S9 mix (an external metabolic system). In addition, wheat bran extracts expressed a dose-depend inhibitory effect on the mutagenicity of promutagen aflatoxin B1 (AFB1), an indirect mutagen which requires metabolic activation, and 3-(5-nitro-2-furyl)acrylic acid (5-NFAA), 2-nitrofluorene (2NF) and hydrogen peroxide (H 2 O 2), direct mutagens, in Salmonella typhimurium TA98, TA100 and TA102 strains. Significant total antioxidant capacity of wheat bran extract was found by two standard spectroscopic assays based on ABTS and DPPH reagents. A special attention was focused to the reactive radical scavenging capacity of bran extract as one of its antioxitant activities. Wheat bran extract possessed higher ability to scavenge oxygen- and carbon-centered reactive radicals generated by the thermal decomposition of K 2 S 2 O 8 than BHT (70 and 65% scavenged radicals, respectively) during the electron paramagnetic resonance (EPR)/spintrapping test. The total phenolic content of wheat bran samples expressed in gallic acid equivalent was 2.7 mg/g, total flavonoid content expressed in rutin equivalent was 70.8 μg/g and the most abundant phenolic acids established by GC-MS method were isoferulic (3-hydroxy-4-metoxycinnamic) and ferulic (4-hydroxy-3-metoxycinnamic) acid, sinapic, caffeic, p -coumaric and vanillic acids.


wheat bran antimutagenic effect antioxidant capacity phenolic acids GC-MS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arts, M.J., Haenen, G.R., Voss, H.P., Bast, A. 2004. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem. Toxicol. 42:45–49.CrossRefGoogle Scholar
  2. Baublis, A.J., Lu, C.H., Clydesdale, F.M., Decker, E.A. 2000. Potential of wheat-based breakfast cereals as a source of dietary antioxidants. J. Am. Coll. Nutr. 19:308–311.CrossRefGoogle Scholar
  3. Beta, T., Nam, S., Dexter, J.E., Sapirstein, H.D. 2005. Phenolic content and antioxidant activity of pearled wheat and roller mill fractions. Cereal Chem. 82:390–393.CrossRefGoogle Scholar
  4. Birošová, L., Mikulášová, M., Vaverková, Š. 2005. Antimutagenic effect of phenolic acids. Biochem. Papers 149:489–491.Google Scholar
  5. Deng, F., Zito, S.W. 2003. Development and validation of a gas chromatographic-mass spectrometric method for simultaneous identification of marker compounds including bilobalide, ginkgolides and flavonoides in Ginko biloba L. extract and pharmaceutical preparations. J. Chrom. A. 986:121–127.CrossRefGoogle Scholar
  6. Esposito, F., Arlotti, G., Bonifati, A.M., Napolitano, A., Vitale, D., Fogliano, V. 2005. Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res. Inter. 38:1167–1173.CrossRefGoogle Scholar
  7. Gasiorowski, K., Szyba, K., Brokos, B., Kozubek, A. 1996. Antimutagenic activity of alkenylresorcinols from cereal grains. Cancer Letters 106:109–115.CrossRefGoogle Scholar
  8. Iqbal, S., Bhanger, M.I., Farooq, A. 2007. Antioxidant properties and components of bran extracts from selected wheat varieties commercially available in Pakistan. LWT 40:361–367.CrossRefGoogle Scholar
  9. Katalinic, V., Milos, M., Kulisic, T., Jukic, M. 2006. Screening of 70 medical plant extracts for antioxidant capacity and total phenols. Food Chem. 94:550–557.CrossRefGoogle Scholar
  10. Kim, K.H., Tsao, R., Yang, R., Cui, S.W. 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 95:466–473.CrossRefGoogle Scholar
  11. Kreft, S., Štrukelj, B., Gaberšcik, A., Kreft, I. 2002. Rutin in buckwheat herbs grown at different UV-B radiation levels: comparison of two UV spectrofotometric and an HPLC method. J. Exp. Bot. 53:1801–1804.CrossRefGoogle Scholar
  12. Krygier, K., Sosulsky, F., Hogge, L. 1982. Free, esterified, and insoluble-bound phenolic acids. 1. extraction and purification procedure. J. Agric. Food Chem. 30:330–334.CrossRefGoogle Scholar
  13. Li, W., Pickard, M.D., Beta, T. 2007. Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chem. 104:1080–1086.CrossRefGoogle Scholar
  14. Liu, R.H. 2007. Whole grain phytochemicals and health. J. Cereal Sci. 46:207–219.CrossRefGoogle Scholar
  15. Liyana-Pathirana, Ch.M., Shahidi, F. 2007. Antioxidant and free radical scavenging activities of whole wheat and milling fractions. Food Chem. 101:1151–1157.CrossRefGoogle Scholar
  16. Maron, D.M., Ames, B.N. 1983. Revised methods for Salmonella mutagenicity test. Mut. Res. 113:173–215.CrossRefGoogle Scholar
  17. Moore, J., Liu, J., Zhou, K., Yu, L. 2006a. Effects of genotype and environment on the antioxidant properties of hard winter wheat bran. J. Agric. Food Chem. 54:5313–5322.CrossRefGoogle Scholar
  18. Moore, J., Yin, J.J., Yu, L. 2006b. Novel fluorometric assay for hydroxyl radical scavenging capacity (HOSC) estimation. J. Agric. Food Chem. 54:617–626.CrossRefGoogle Scholar
  19. Mpofu, A., Sapirstein, H.D., Beta, T. 2006. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agric. Food Chem. 54:1265–1270.CrossRefGoogle Scholar
  20. O’Brien, L., DePauw, R. 2004. Wheat. In: Wrigley, C., Corke, H., Walker, C.H. (first edition), Encyclopedia of grain science. Vol. 3, Elsevier Ltd., Oxford, pp. 330–336. ISBN 0-12-765490-9CrossRefGoogle Scholar
  21. Rapta, P., Polovka, M., Zalibera, M., Breierova, E., Zitnanova, I., Marova, I., Certik, M. 2005. Scavenging and antioxidant properties of compounds synthesized by carotenogenic yeasts stressed by heavy metals-EPR spin trapping study. Biophys. Chem. 116:1–9.CrossRefGoogle Scholar
  22. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 26:1231–1237.CrossRefGoogle Scholar
  23. Santos, N. C., Figueira-Coelho, J., Martins-Silva, J. Saldanha, C. 2003. Multidisciplinary utilization of dimethyl sulfoxide: Pharmacological, cellular, and molecular aspects. Biochem. Pharmacol. 65:1035–1041.CrossRefGoogle Scholar
  24. Shon, M.Y., Choi, S.D., Kahng, G.G., Nam, S.H., Sung, N.J. 2004. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem. Toxicol. 42:659–666.CrossRefGoogle Scholar
  25. Slavin, J.L., Martini, M.C., Jacobs, D.R., Marquart, L. 1999. Plausible mechanisms for the protectiveness of whole grains. Am. J. Clinical Nutr. 70:459–463.CrossRefGoogle Scholar
  26. Staško, A., Liptákova, M., Malík, F. Mišík, V. 2002. Free radical scavenging activities of white and red wines: An EPR spin trapping study. Appl. Magn. Reson. 22:101–113.CrossRefGoogle Scholar
  27. Staško, A., Polovka, M., Brezova, V., Biskupic, S., Malík, F. 2006. Tokay wines as scavengers of free radicals (an EPR study). Food Chem. 96:185–196.CrossRefGoogle Scholar
  28. Wardman, P. 1989. Reduction potentials of one-electron couples involving free-radicals in aqueous-solutions. J. Phys. Chem. Ref. Data 18:1637–1755.CrossRefGoogle Scholar
  29. Wu, S.C., Yen, G.C., Wang, B.S., Chiu, C.K., Yen, W.J., Chang, L.W., Duh, P.D. 2007. Antimutagenic and antimicrobial activities of pu-ehr tea. Food Sci. Technol. 40:506–512.Google Scholar
  30. Yamada, J., Tomita, Y. 1996. Antimutagenic activity of caffeic acid and related compounds. Biosci. Biotechnol. Biochem. 60:328–329.CrossRefGoogle Scholar
  31. Yen, G.C., Chen, H.Y. 1995. Antioxidant activity of various tea extracts in relation to their mutagenicity. J. Agric. Food Chem. 43:27–32.CrossRefGoogle Scholar
  32. Yu, L., Haley, S., Perret, J., Harris, M. 2004. Comparison of wheat flours grown at different locations for their antioxidant properties. Food Chem. 86:11–16.CrossRefGoogle Scholar
  33. Zhou, K., Laux, J., Yu, L. 2004. Comparison of Swiss red wheat grain and fractions for their antioxidant properties. J. Agric. Food Chem. 52:1118–1123.CrossRefGoogle Scholar
  34. Zhou, K., Yin, J., Yu, L. 2006. ESR determination of the reactions between wheat phenolic acids and free radicals or transition metals. Food Chem. 95:446–457.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • L. Brindzová
    • 1
    Email author
  • M. Zalibera
    • 2
  • T. Jakubík
    • 3
  • M. Mikulášová
    • 4
  • M. Takácsová
    • 1
  • S. Mošovská
    • 1
  • P. Rapta
    • 2
  1. 1.Department of Nutrition and Food EvaluationSlovak University of TechnologyBratislavaSlovak Republic
  2. 2.Department of Physical ChemistrySlovak University of TechnologyBratislavaSlovak Republic
  3. 3.Mass Spectrometry Laboratory, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovak Republic
  4. 4.Institute of Cell Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovak Republic

Personalised recommendations