Advertisement

Cereal Research Communications

, Volume 37, Issue 1, pp 37–43 | Cite as

Glume Coloration in Wheat: Allelism Test, Consensus Mapping and its Association with Specific Microsatellite Allele

  • E. K. KhlestkinaEmail author
  • E. A. Salina
  • T. A. Pshenichnikova
  • M. S. Röder
  • A. Börner
Genetics

Abstract

A segregation test confirmed that the genes present on chromosome 1A encoding red and black glumes are allelic to one another. Similarly, the chromosome 1D genes for smokey-grey and red glume coloration are allelic. Consensus maps of chromosomes 1A and 1D carrying Rg-A1 and Rg-D1, respectively, were derived from extant genotypic data. The Gli-B1 associated microsatellite MW1B002 mapped 2cM proximal from Rg-B1. The association of red glume coloration with specific MW1B002 alleles is described for a set of Russian, Albanian, Indian and Nepalese bread wheats.

Keywords

bread wheat allelism homoeologous genes consensus mapping microsatellite markers glume coloration germplasm collection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biffen, R.H. 1905. Mendel’s law of inheritance and wheat breeding. Agr. Sci. 1:48.Google Scholar
  2. Blanco, A., Bellomo, M.P., Cenci, A., De Giovanni, C., D’Ovidio, R., Iacono, E., Laddomada, B., Pagnotta, M.A., Porceddu, E., Sciancalepore, A., Simeone, R., Tanzarella, O.A. 1998. A genetic linkage map of durum wheat. Theor. Appl. Genet. 97:721–728.CrossRefGoogle Scholar
  3. Börner, A., Schumann, E., Fürste, A., Cöster, H., Leithold, B., Röder, M.S., Weber, W.E. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105:921–936.CrossRefGoogle Scholar
  4. Burnham, C.R. 1962. Discussions in Cytogenetics. Burgess Publ Co, Minneapolis, pp. 1–375.Google Scholar
  5. Devos, K.M., Bryan, G.J., Collins, A.J., Stephenson, P., Gale, M.D. 1995. Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor. Appl. Genet. 90:247–252.CrossRefGoogle Scholar
  6. Dubcovsky, J., Dvorak, J. 1995. Ribosomal RNA multigene loci: Nomads of the Triticeae genomes. Genetics 140:1367–1377.PubMedPubMedCentralGoogle Scholar
  7. Efremova, T.T., Maystrenko, O.I., Arbuzova, V.S., Laikova, L.I. 1998. Genetic analysis of glume colour in common wheat cultivars from the former USSR. Euphytica 102:211–218.CrossRefGoogle Scholar
  8. Engledow, F.L. 1914. A case of repulsion in wheat. Cambridge Phil. Soc. Proc. 17:433–435.Google Scholar
  9. Howard, A., Howard, G. 1912. On the inheritance of some characters in wheat. I. India Dept. Agr. Mem. Bot. Ser. 5:1–47.Google Scholar
  10. Jones, S.S., Dvorak, J., Qualset, C.O. 1990. Linkage relations of Gli-D1, Rg2, and Lr21 on the short arm of chromosome 1D in wheat. Genome 33:937–940.CrossRefGoogle Scholar
  11. Kerber, E.R., Dyck, P.L. 1969. Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can. J. Genet. Cytol. 11:639–647.CrossRefGoogle Scholar
  12. Khlestkina, E.K., Salina, E.A., Pshenichnikova, T.A., Arbuzova, V.S., Koval’, S.F. 2000. Analysis of isogenic lines of the soft wheat carrying dominant alleles of Bg, Hg, and Rg1 genes using microsatellite and protein markers. Rus. J. Genet. 36:1153–1158.Google Scholar
  13. Khlestkina, E.K., Huang, X., Quenun, S.Y.B., Chebotar, S., Röder, M.S., Börner, A. 2004a. Genetic diversity in cultivated plants — loss or stability. Theor. Appl. Genet. 108:1466–1472.CrossRefGoogle Scholar
  14. Khlestkina, E.K., Röder, M.S., Efremova, T.T., Börner, A., Shumny, V.K. 2004b. The genetic diversity of old and modern Siberian varieties of common spring wheat determined by microsatellite markers. Plant Breed. 123:122–127.CrossRefGoogle Scholar
  15. Khlestkina, E.K., Pshenichnikova, T.A., Röder, M.S., Arbuzova, V.S., Salina, E.A., Börner, A. 2006. Comparative mapping of genes for glume colouration and pubescence in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 113:801–807.CrossRefGoogle Scholar
  16. Kosambi, D.D. 1944. The estimation of map distances from recombination values. Ann. Eugenet. 12:172–175.CrossRefGoogle Scholar
  17. Koval, S.F., Metakovsky, E.V., Kudryavtsev, A.M., Sozinov, A.A. 1986. On linkage of allele families of gliadin-coding loci to genes for hairy glume and glume colour in wheat. (in Russian). Sel’skokh. Biol. 2:31–35.Google Scholar
  18. Koval, S.F. 1994. Genetic analysis of isogenic lines of spring wheat variety Novosibirskaya 67: 1. Location of the gene determining the brown color of the glume in chromosome 1D. Rus. J. Genet. 30:508–509.Google Scholar
  19. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, I. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.CrossRefGoogle Scholar
  20. Landjeva, S., Korzun, V., Ganeva, G. 2006. Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925–2003 using microsatellites. Gen. Res. Crop. Evol. 53:1605–1614.CrossRefGoogle Scholar
  21. Law, C.N., Chapman, V. 1974. An inhibitor of glume colour. EWAC Newsl. 4:8–9.Google Scholar
  22. Malinowski, E. 1914. Les hybrids du froment. Bull. Acad. Sci. Cracovie. 3:410–450.Google Scholar
  23. Nilsson-Ehle, H. 1909. Kreuzungsuntersuchungen an Hafer und Weizen. Acta Univ. Lund. Ser. II, 5:1–122.Google Scholar
  24. Panin, V.M., Netsvetaev, V.P. 1986. Genetic control of gliadins and some morphological characters of spike in durum winter wheats (in Russian). Sci. Tech. Bull. VSG I. Odessa 2:31–36.Google Scholar
  25. Payne, P.I., Holt, L.M., Johnson, R., Snape, J.W. 1986. Linkage mapping of four gene loci Glu-B1, Gli-B1, Rg1, and Yr10 on chromosome 1B of bread wheat. Genet. Agrar. 40:231–242.Google Scholar
  26. Philipchenko, Y.A. 1934. Genetics of soft wheats, Moscow-Leningrad, pp. 1–262.Google Scholar
  27. Poperelya, F.A., Bito, M., Sozinov, A.A. 1980. Relation of gliadin component clusters to plant survival and productivity, glume color, and flour quality in F 2 hybrids between cultivars Bezostaya and Cervena Zvezda (in Russian). Rep. VASKHNIL 4:4–7.Google Scholar
  28. Pshenichnikova, T.A., Maystrenko, O.I. 1995. Inheritance of genes coding for gliadin proteins and glume colour introgressed into Triticum aestivum from a synthetic wheat. Plant Breed. 114:501–504.CrossRefGoogle Scholar
  29. Pshenichnikova, T.A., Bokarev, I.E., Shchukina, L.V. 2005. Hybrid and monosomic analyses of smoky coloration of the ear in common wheat. Rus. J. Genet. 41:1147–1149.Google Scholar
  30. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  31. Salina, E.A., Leonova, I.N., Efremova, T.T., Röder, M.S. 2006. Wheat genome structure: translocations during the course of polyploidization. Funct. Integr. Genomics 6:71–80.CrossRefGoogle Scholar
  32. Sobko, T.A., Sozinov, A.A. 1993. Genetic control of morphologic traits of a spike and the relationship with allelic variation of marker loci of chromosomes 1A and 1B of winter common wheat (in Russian). J. Cytol. Genet. 27:15–22.Google Scholar
  33. Sobko, T.A., Sozinov, A.A. 1997. Linkage mapping of the loci controlling spike morphological traits and seed storage proteins on the 1A chromosome in winter common wheats (in Russian). J. Cytol. Genet. 31:18–26.Google Scholar
  34. Tschermak, E. 1901. Über Züchtung neuer Getreiderassen mittelst künstlicher Kreuzung. Zts Landw. Versuchsw., Oesterreich 4:1029–1060.Google Scholar
  35. Unrau, J. 1950. The use of monosomes and nullisomes in cytogenetic studies in common wheat. Sci. Agr. 30:66–89.Google Scholar
  36. Vacenko, A.A. 1934. Inheritance of glume pubescence and of the black colour of the ear in durum wheat (Triticum durum Desf.) (in Russian). Rep. Acad. Sci. USSR. 4:338–343.Google Scholar
  37. Van Deynze, A.E., Dubovsky, J., Gill, K.S., Nelson, J.C., Sorrells, M.E., Dvorak, J., Gill, B.S., Lagudah, E.S., McCouch, S.R., Appels, R. 1995. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59.CrossRefGoogle Scholar
  38. Yelokhina, L.P. 1989. Genetic control of spike coloration in the common spring wheat cv. ‘Milturum 553’. Proc. Conf. Sci. Advanc. Agric., Omsk, v. 1, pp. 13–14.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2009

Authors and Affiliations

  • E. K. Khlestkina
    • 1
    Email author
  • E. A. Salina
    • 1
  • T. A. Pshenichnikova
    • 1
  • M. S. Röder
    • 2
  • A. Börner
    • 2
  1. 1.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations