Searching for an Effective Conservation Strategy of Aegilops tauschii Genetic Variation

Abstract

Genetic variation in Aegilops tauschii, the genome D donor of common wheat, is an important natural resource. Ae. tauschii is a stochastic steady-state genetic system of numerous small populations belonging to the two subspecies, tauschii and strangulata. The level of genetic differentiation is high; most of the genetic variation is among populations. Local populations are rather isolated and genetic drift plays an important role. Under such conditions important “new genes” are found not only in the recognized centre of Ae. tauschii genetic variability, but also in accessions collected in the parts of the species range with relatively low general levels of genetic variability. Moreover, additional collections in the regions which are already well represented in germplasm collections could also have previously unknown “new” alleles.

References

  1. Barton, N., Clark, A. 1990. Population structure and processes in evolution. In: Wohrmann, K., Jain, S.K. (eds.), Population Biology. Ecological and Evolutionary Viewpoints. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong. Springer-Verlag, pp. 115–173.

    Google Scholar 

  2. Dudnikov, A.Ju., Goncharov, N.P. 1993. Allozyme variation in Aegilops squarrosa. Hereditas 119:117–122.

    CAS  Article  Google Scholar 

  3. Dudnikov, A.Ju. 1998. Allozyme variation in Transcaucasian populations of Aegilops squarrosa. Heredity 80:248–258.

    Article  Google Scholar 

  4. Dudnikov, A.Ju. 2000. Multivariate analysis of genetic variation in Aegilops tauschii from the world germplasm collection. Genet. Resour. and Crop Evol. 47:185–190.

    Article  Google Scholar 

  5. Dudnikov, A.Ju. 2003a. Allozymes and growth habit of Aegilops tauschii: genetic control and linkage patterns. Euphytica 129:89–97.

    CAS  Article  Google Scholar 

  6. Dudnikov, A.Ju. 2003b. Germination capacity is in line with the allelic constitution of enzyme-encoding genes in Aegilops tauschii. Cereal Res. Comm. 31:403–406.

    Google Scholar 

  7. Dudnikov, A.Ju., Kawahara, T. 2006. Aegilops tauschii: genetic variation in Iran. Genet. Resour. and Crop Evol. 53:579–586.

    Article  Google Scholar 

  8. Dudnikov, A.Ju. 2007. An acid phosphatase gene set (Acph-2) of common wheat orthologous to Acph1 of Aegilops tauschii. Cereal Res. Comm. 35:11–13.

    CAS  Article  Google Scholar 

  9. Eig, A. 1929. Monographisch-kritische Übersicht der Gattung Aegilops. Reportorium Specierum Novarum Regni Vegetabilis. Beihefte 55:1–228.

    Google Scholar 

  10. Feldman, M. 2001. Origin of cultivated wheat. In: Bonjean, P., Angu, W.J. (eds.), The World Wheat Book. Ahistory of Wheat Breeding, Lavoisier Publishing, Paris, pp. 3–58.

    Google Scholar 

  11. Hedrick, P.W. 1999. Genetics of Populations. Jones and Bartlett Publishers, Boston, Toronto, London, Singapore.

    Google Scholar 

  12. Jaaska, V. 1981. Aspartate aminotransferase and alcohol dehydrogenase enzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Pl. Syst. Evol. 137:259–273.

    CAS  Article  Google Scholar 

  13. Kimber, G., Feldman, M. 1987. Wild wheat. An introduction. Special report 353. College of Agr. Univ. Missouri, Columbia, pp. 1–142.

    Google Scholar 

  14. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, pp. 367.

    Book  Google Scholar 

  15. Kirby, J., Vinh, H.T., Reader S.M., Dudnikov, A.Ju. 2005. Genetic mapping of the Acph1 locus in Aegilops tauschii. Plant Breeding 124:523–524.

    CAS  Article  Google Scholar 

  16. Mukai, T. 1970. Spontaneous mutation rates of isozyme genes in Drosophila melanogaster. Drosophila Inform. Service 45:99.

    Google Scholar 

  17. Wood, P., Vaczek, L., Hamblin, D.J., Leonard, J.N. 1973. Life Before Man. Time-Life International, UK, pp. 160.

    Google Scholar 

  18. Zhukovsky, P.M. 1928. A critical-systematical survey of the species of the genus Aegilops L. Bull. Appl. Bot., Genet., Plant Breed. 18:417–609. (in Russian)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ju. Dudnikov.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Dudnikov, A.J. Searching for an Effective Conservation Strategy of Aegilops tauschii Genetic Variation. CEREAL RESEARCH COMMUNICATIONS 37, 31–36 (2009). https://doi.org/10.1556/CRC.37.2009.1.4

Download citation

Keywords

  • Aegilops tauschii
  • genetic drift
  • genetic resources
  • germplasm
  • natural selection
  • population genetic structure