Cereal Research Communications

, Volume 36, Issue 4, pp 533–541 | Cite as

Comparison of PCR-Based DNA Markers for Using Different Lr19 and Lr24 Leaf Rust Resistance Wheat Sources

  • A. UhrinEmail author
  • L. Láng
  • Z. Bedő


Both resistance genes Lr19 and Lr24 originate from Agropyron elongatum. The gene Lr24 is derived from two different translocations: 1BS/3Ag (‘Amigo’) or 3DS/3Ag (‘Agent’). The use of molecular markers makes selection easier during the breeding process as well as in the selection of the parents. In this study, two markers were used to identify the gene Lr19 (GbF/R130, SCS265512) and four different markers (J9/1-2310, SC-H5700, SCS1302613 and SCS1326607) were available to search for the gene Lr24. The GbF/R130 marker for gene Lr19 worked well, but the SCAR marker SCS265512 proved to be easier to use in MAS. SCAR markers SCS1302613 and SCS1326607 proved to be highly reliable and effective for gene Lr24 not only in Agent-derived sources but also in ‘Amigo’ derivatives. The STS marker J9/1-2310 and the SCAR marker SC-H5700 required several modifications and were effective only in ‘Agent’ offsprings.


SCAR marker STS marker leaf rust resistance MAS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai, D., Knott, D.R. 1992. Suppression of rust resistance in bread wheat (Triticum aestivum) by D-genome chromosomes. Genome 35:276–282.CrossRefGoogle Scholar
  2. Bhardwaj, S.C., Prashar, M., Kumar, S., Jain, S.K., Datta, D. 2005. Lr19 resistance in wheat become susceptible to Puccinia triticina in India. Plant Disease 89:1360 DOI:  10.1094/PD-89-1360ACrossRefGoogle Scholar
  3. Dedryver, F., Jubier, M.F., Thouverin, J., Goyeau, H. 1996. Molecular markers linked to leaf rust resistance gene Lr24 in different wheat cultivars. Genome 39:830–835.CrossRefGoogle Scholar
  4. Dyck, P.L. 1987. The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467–469.CrossRefGoogle Scholar
  5. Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A., Gill, B.S. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87.CrossRefGoogle Scholar
  6. Gál, M., Vida, G., Uhrin, A., Bedő, Z., Veisz, O. 2007. Incorporation of leaf rust genes into winter wheat genotypes using marker-assisted selection. Acta Agronomica Hungarica 55:149–156.CrossRefGoogle Scholar
  7. Gupta, A.K., Saini, R.G., Gupta, S., Malhotra, S. 1984. Genetic analysis of two wheat cultivars, “Sonalika” and “WL711” for reaction to leaf rust (Puccinia recondita). Theor. Appl. Genet. 67:215–217.CrossRefGoogle Scholar
  8. Gupta, S.K., Charpe, A., Prabhu, K.V., Haque, Q.M.R. 2006a. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor. Appl. Genet. 113:1027–1036.CrossRefGoogle Scholar
  9. Gupta, S.K., Charpe, A., Prabhu, K.V., Haque, Q.M.R., Prabhu, K.V. 2006b. Development and validation of SCAR markers co-segregating with an Agropyron elongatum derived leaf rust resistance gene Lr24 in wheat. Euphytica 150:233–240.CrossRefGoogle Scholar
  10. Huerta-Espino, J., Singh, R.P. 1994. First report of virulence to wheat leaf rust resistance gene Lr19 in Mexico. Plant Disease 78:640–644.CrossRefGoogle Scholar
  11. Jiang, J.B., Friebe, B., Gill, B.S. 1994. Chromosome painting of Amigo wheat. Theor. Appl. Genet. 89:811–813.CrossRefGoogle Scholar
  12. Knott, D.R. 1968. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying leaf rust resistance. Can. J. Genet. Cytol. 10:695–696.CrossRefGoogle Scholar
  13. Knott, D.R. 1980. Mutation of a gene for yellow pigment linked to Lr19 in wheat. Can. J. Genet. Cytol. 22:651–654.CrossRefGoogle Scholar
  14. Manninger, K. 2002. Effective resistance genes as sources of resistance against Hungarian wheat rusts. Czech J. Genet. Plant Breed. 38:153–154.CrossRefGoogle Scholar
  15. Marais, G.F. 1992. The modification of a common wheat-Thinopyrum distichum translocated chromosome with a locus homeoallelic to Lr19. Theor. Appl. Genet. 85:73–78.CrossRefGoogle Scholar
  16. Marais, G.F., Marais, A.S., Groenwald, J.Z. 2001. Evaulation and reduction of Lr19-149, a recombined form of the Lr19 translocation of wheat. Euphytica 121:289–295.CrossRefGoogle Scholar
  17. Mesterházy, A., Bartos, P., Goyeau, H., Niks, R.E., Csősz, M., Andreson, O., Casulli, F., Ittu, M., Jones, E., Manisterski, J., Manninger, K., Pasquini, M., Rubiales, D., Schachermayr, G., Strzembicka, A., Szunics, L., Todorova, M., Unger, O., Vanco, B., Vida, G., Walther, U. 2000. European virulence survey for leaf rust in wheat. Agronomie 20:793–804.CrossRefGoogle Scholar
  18. Nocente, F., Gazza, L., Pasquini, M. 2006. Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into wheat cultivars by marker-assisted selection. Euphytica. DOI  10.1007/s10681-006-9334-x
  19. Prabhu, K.V., Gupta, S.K., Charpe, A., Koul, S. 2004. SCAR marker tagged to the alien leaf rust resistance gene Lr19 uniquely marking the Agropyron elongatum-derived gene Lr24 in wheat: a revision. Plant Breeding 123:417–420.CrossRefGoogle Scholar
  20. Prins, R., Groenewald, J.Z., Marais, G.F., Snape, J.W. 2001. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor. Appl. Genet. 103:618–624.CrossRefGoogle Scholar
  21. Schachermayr, G.M., Messmer, M.M., Feuillet, C., Winzeler, H., Winzeler, M., Keller, B. 1995. Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor. Appl. Genet. 90:982–990.CrossRefGoogle Scholar
  22. Schnurbusch, T., Paiilard, S., Schori, A., Messmer, M., Schachermayr, G., Winzeler, M., Keller, B. 2004. Dissection of quantitive and durable laef rust resistance in Swiss winter wheat reveals amajor resistance QTL in the Lr34 chromosomal region. Theor. Appl. Genet. 108:477–484.CrossRefGoogle Scholar
  23. Sears, E.R. 1977. Analysis of wheat-Agropyron recombinant chromosomes. In: Sanchez-Monge, E., Garcia-Olmedo, F. (eds), Interspecific hybridization in plant breeding. Proceedings of the 8th EUCARPIA Congress, Madrid, Spain, 1977. pp. 63–72.Google Scholar
  24. Sharma, D., Knott, D.R. 1966. The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 8:137–143.CrossRefGoogle Scholar
  25. Smith, E.R., Schlehuber, A.M., Young, H.C., Edwards, L.H. 1968. Registration of Agent Wheat. Crop Science 8:511–512.CrossRefGoogle Scholar
  26. William, M., Singh, R.P., Huera-Espino, J., Islas, S.O., Hoisington, D. 2003. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153–159.CrossRefGoogle Scholar
  27. Zhang, W., Soria, M.A., Goyal, S., Dubcovsky, J., Lukaszewski, A.J., Kolmer, J. 2005. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor. Appl. Genet. 111:573–582.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

Authors and Affiliations

  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations