Advertisement

Cereal Research Communications

, Volume 36, Issue 3, pp 451–460 | Cite as

Production of a New Wheat Cultivar with a Different 1B.1R Translocation with Resistance to Powdery Mildew and Stripe Rust

  • Z. X. Tang
  • S. L. Fu
  • Z. L. RenEmail author
  • H. Q. Zhang
  • Z. L. Yang
  • B. J. Yan
  • H. Y. Zhang
Open Access
Article

Abstract

Wheat-rye 1BL.1RS translocations have been widely used in wheat breeding programs. A 1BL.1RS translocation wheat line, 91S-23, was developed from a 1R monosomic addition of the rye (Secale cereale) inbred line L155 into wheat (Triticum aestivum) MY11. A new commercial wheat cultivar, CN18, which also contained the 1BL.1RS translocation, was derived from the cross MY11 × 91S-23. Polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH) indicated that the rye centromere was eliminated from the 1BL.1RS chromosomes of CN18 but not from 91S-23. Based on the 1RS source and the centromeric structure of the translocation chromosome, CN18 qualifies as a new wheat cultivar possessing a 1BL.1RS translocation. CN18 displayed high yield performance and resistance to powdery mildew and stripe rust, whereas 91S-23 was susceptible to these diseases. The present study provides a new 1RS resource for wheat improvement.

Keywords

1BL.1RS translocation centromere new wheat cultivar variation of 1RS 

References

  1. Chai, J.F., Zhou, R.H., Jia, J.Z., Liu, X. 2006. Development and application of a new codomint PCR marker for dectecting 1BL.1RS wheat-rye chromosome translocations. Plant Breed. 125:302–304.CrossRefGoogle Scholar
  2. De Froidmont, D. 1998. A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR. J. Cereal Sci. 27:229–232.CrossRefGoogle Scholar
  3. D. Nagy, E., Eder, Ch., Molnár-Láng, M., Lelley, T. 2003. Genetic mapping of sequence specific PCR-based markers in the short arm of the 1BL.1RS wheat-rye translocation. Euphytica 132:243–250.CrossRefGoogle Scholar
  4. Francki, M.G. 2001. Identification of Bilby, a diverged centromeric Tyl-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44:266–274.CrossRefGoogle Scholar
  5. Kim, W., Johnson, J.W., Baenziger, P.S., Lukaszewski, A.J., Gaines, C.S. 2004. Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci. 44:1254–1258.CrossRefGoogle Scholar
  6. Ko, J.M., Seo, B.B., Suh, D.Y., Do, G.S., Park, D.S. 2002a. Production of a new wheat lines possessing the 1BL.1RS wheat-rye translocation derived from Korean rye cultivar Paldanghomil. Theor. Appl. Genet. 104:171–176.CrossRefGoogle Scholar
  7. Ko, J.M., Do, G.S., Suh, D.Y., Seo, B.B., Shin, D.C., Moon, H.P. 2002b. Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat. Genome 45:157–164.CrossRefGoogle Scholar
  8. Kőszegi, B., Linc, G., Juhász, A., Láng, L., Molnár-Láng, M. 2000. Occurrence of the 1RS/1BL wheat-rye translocation in Hungarian wheat varieties. Acta Agr. Hung. 48:227–236.CrossRefGoogle Scholar
  9. Landjeva, S., Korzun, V., Tsanev, V., Vladova, R., Ganeva, G. 2006. Distribution of the wheat-rye translocation 1RS.1BL among bread wheat varieties of Bulgaria. Plant Breed. 125:102–104.CrossRefGoogle Scholar
  10. Li, Y.W., Li, Z.S., Jia, X. 2002. Meiotic behavior of 1BL.1RS translocation chromosome and alien chromosome in two tri-general hybrids. Acta Botan. Sin. 44:821–826.Google Scholar
  11. Lukaszewski, A.J. 1990. Frequency of 1RS.1AL and 1RS.1BL translocations in United States wheats. Crop Sci. 30:1151–1153.CrossRefGoogle Scholar
  12. Lukaszewski, A.J. 1993. Reconstruction in wheat of complete chromosomes 1B and 1R from the 1RS.1BL translocation of ‘Kavkaz’ origin. Genome 36:821–824.CrossRefGoogle Scholar
  13. Lukaszewski, A.J. 1997. Further manipulation by centric misdivision of the 1RS.1BL translocation in wheat. Euphytica 94:257–261.CrossRefGoogle Scholar
  14. Luo, P.G., Ren, Z.L., Zhang, H.Q., Zhang, H.Y. 2005. Identification, chromosome location, and diagnostic markers for a new gene (YrCN19) for resistance to wheat stripe rust. Phytopathology 95:1266–1270.CrossRefGoogle Scholar
  15. Lutz, J., Limpert, E., Bartos, P., Zeller, F.J. 1992. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) I. Czechoslovakian cultivars. Plant Breed. 108:33–39.CrossRefGoogle Scholar
  16. McIntyre, C.L., Pereira, S.L., Moran, B., Appels, R. 1990. New Secale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640.CrossRefGoogle Scholar
  17. McKendry, A.L., Tague, D.N., Miskin, K.E. 1996. Effect of 1BL.1RS on agronomic performance of soft red winter wheat. Crop Sci. 36:844–847.CrossRefGoogle Scholar
  18. Mohler, V., Hsam, S.L.K., Zeller, F.J., Wenzel, G. 2001. An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed. 120:448–450.CrossRefGoogle Scholar
  19. Molnár-Láng, M., Kőszegi, B., Linc, G., Sutka, J. 1996. Búza (Triticum aestivum L.)/Triticum timopheevii Zhuk., addíció, szubsztitúció és búza/rozs transzlokáció kimutatása C-sávozással és in situ hibridizációval [Detection of wheat (Triticum aestivum L.)/Triticum timopheevii Zhuk. addition and substitution and wheat/rye translocation by C-banding and in situ hybridization]. Növénytermelés 45:237–245.Google Scholar
  20. Moreno-Sevilla, B., Baenziger, P.S., Shelton, D.R., Graybosch, R.A., Peterson, C.J. 1995. Agronomic performance and end-use quality of 1B vs. 1BL/1RS genotypes derived from winter wheat ‘Rawhide’. Crop Sci. 35:1607–1612.CrossRefGoogle Scholar
  21. Rabinovich, S.V. 1998. Importance of wheat-rye translocation for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340.CrossRefGoogle Scholar
  22. Ren, Z.L., Zhang, H.Q. 1997. Induction of small-segment-translocation between wheat and rye chromosomes. Sci. in China (Series C) 40:323–331.CrossRefGoogle Scholar
  23. Saal, B., Wricke, G. 1999. Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972.CrossRefGoogle Scholar
  24. Schlegel, R., Meinel, A. 1994. A quantitative trait locus (QTL) on chromosome arm 1RS of rye and its effect on yield performance of hexaploid wheats. Cereal Res. Comm. 22:7–13.Google Scholar
  25. Schlegel, R., Korzun, V. 1997. About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breed. 116:537–540.CrossRefGoogle Scholar
  26. Schlegel, R. 1997. Current list of wheats with rye introgression of homoelogous group 1, 2nd update. Wheat Inf. Serv. 84:64–69.Google Scholar
  27. Van Campenhout, S., Vander Stappen, J., Sagi, L., Volckaert, G. 1995. Locus-specific primers for LMW glutenin genes on each of the group 1 chromosomes of hexaploid wheat. Theor. Appl. Genet. 91:313–319.CrossRefGoogle Scholar
  28. Villareal, R.L., Banuelos, O., Mujeeb-Kazi, A., Rajaram, S. 1998. Agronomic performance of chromosome 1B and T1BL.1RS nearisolines in the spring bread wheat Seri M82. Euphytica 103:195–202.CrossRefGoogle Scholar
  29. Yang, Z.J., Li, G.R., Jiang, H.R., Ren, Z.L. 2001. Expression of nucleolus, endosperm storage proteins and disease resistance in an amphiploid between Aegilops tauschii and Secale silvestre. Euphytica 119:317–321.CrossRefGoogle Scholar
  30. Zhang, H.B., Zhao, X.P., Ding, X., Paterson, A.H., Wing, R.A. 1995. Preparation of megabase-sized DNA from plant nuclei. Plant J. 7:175–184.CrossRefGoogle Scholar
  31. Zhang, P., Friebe, B., Lukaszewski, A.J., Gill, B.S. 2001. The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110:335–344.CrossRefGoogle Scholar
  32. Zhou, Y., He, Z.H., Zhang, G.S., Xia, L.Q., Chen, X.M., Gao, Y.C., Jing, Z.B., Yu, G.J. 2004. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron. Sin. 30:531–535.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Z. X. Tang
    • 1
  • S. L. Fu
    • 1
  • Z. L. Ren
    • 1
    • 2
    Email author
  • H. Q. Zhang
    • 1
  • Z. L. Yang
    • 2
  • B. J. Yan
    • 1
  • H. Y. Zhang
    • 1
  1. 1.State Key Laboratory of Plant Genetics and BreedingSichuan Agricultural UniversityYa’an cityChina
  2. 2.School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations