Cereal Research Communications

, Volume 36, Issue 3, pp 429–440 | Cite as

Comparative Analysis of the Homoeologous Pairing Effects of phKL Gene in Common Wheat × Psathyrostachys huashanica Keng ex Kuo

  • H. Y. Kang
  • H. Q. Zhang
  • Y. Wang
  • Y. Jiang
  • H. J. Yuan
  • Y. H. ZhouEmail author


In the natural populations of common wheat landrace Kaixianluohanmai, there was a phKL gene which promotes homoeologous pairing of wheat-alien hybrids. In the present study, the effects of phKL gene on crossability and homoeologous pairing of Triticum aestivum × Psathyrostachys huashanica Keng ex Kuo hybrids were comparatively analyzed. The crossability of the hybrid between Sichuan wheat landrace Kaixianluohanmai and P. huashanica was highest in all the hybrid combinations with 3.18%. The hybrids T. aestivum (Kaixianluohanmai) × P. huashanica showed a pairing configuration of 21.70 univalents + 2.68 rod bivalents + 0.34 ring bivalents + 0.06 trivalents + 0.02 quadrivalents and 3.54 chiasma per PMC at MI. However, the chiasma in hybrids of CS, CS ph1b, CS ph2a and CS ph2b with P. huashanica was 0.56, 1.90, 0.87 and 0.60, respectively. Compared with the hybrids of CS, CS ph1b, CS ph2a and CS ph2b with P. huashanica, a significant increase in the chiasma of homoeologous pairing was observed in the hybrids of T. aestivum (Kaixianluohanmai) × P. huashanica. The effects were shown in the increment of rod bivalents, ring bivalents and trivalents and reduction of univalents. The results indicated that phKL showed a higher effect on promoting homoeologous pairing than ph1 and ph2 in T. aestivum × P. huashanica. The wheat landrace Kaixianluohanmai with phKL gene is probably a more desirable material for alien gene transferring than Ph2 -deficiency lines.


common wheat Psathyrostachys huashanica homoeologous pairing Ph gene phKL gene interspecific hybridization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ceoloni, C., Donini, P. 1993. Combining mutations for two homoeologous pairing suppressor genes Ph1 and Ph2 in common wheat and in hybrids with alien Triticeae. Genome 36:377–386.CrossRefGoogle Scholar
  2. Chen, S.Y., Zhang, A.J., Fu, J. 1991. The hybridization between Triticum aestivum and Psathyrostachys huashanica. Acta Genet. Sin. 18:508–512.Google Scholar
  3. Chen, P.D., Tsujimoto, H., Gill, B.S. 1994. Transfer of ph1 genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor. Appl. Genet. 88:97–101.CrossRefGoogle Scholar
  4. Cui, Y.X., Ma, Y.S. 1988. Evaluation and utilization of major agronomic characters of Chinese endemic wheat. Acta Agric. Nucl. Sin. 2:129–139.Google Scholar
  5. Driscoll, C.J., Quinn, C.J. 1970. Genetic variation in Triticum affecting the level of chromosome pairing in intergeneric hybrids. Can. J. Genet. Cytol. 12:278–282.CrossRefGoogle Scholar
  6. Farooq, S., Iqbal, N., Shah, T.M. 1990. Intergenetic hybridization for wheat improvement. III. Genetic variation in Triticum species affecting homoeologous chromosome pairing. Cereal Res. Comm. 18:233–237.Google Scholar
  7. Feldman, M. 2001. The origin of cultivated wheat. In: Bonjean, A.P., Angus, W.J. (eds), The Wheat Book. Lavoisier Publishing, Paris, pp. 1–56.Google Scholar
  8. Fu, T.H., Ren, Z.L., Lin, W.J. 1992. Study on ph genes in natural population of Sichuan common wheat landraces. In: Ren, Z.L., Peng, J.H. (eds), Exploration of Crop Breeding. Sichuan Science and Technology Press, Chengdu, pp. 177–192.Google Scholar
  9. Jing, J.X., Fu, J., Yuan, H.X., Wang, M.N., Shang, H.S., Li, Z.Q. 1999. A preliminary study on heredity of the resistance to stripe rust in three wild relatives of wheat. Acta Phytopath. Sin. 29:147–150.Google Scholar
  10. Kuo, P.C. 1987. Flora Reipublicae Popularis Sinicae. Science Press, Beijing, 9 (3):51–104.Google Scholar
  11. Krolow, K.D. 1970. Untersuchungen über die Kreuzbarkeit zwischen Weizen und Roggen. Z. Pflanzenzücht 64:44–72.Google Scholar
  12. Liu, D.C., Luo, M.C., Yang, J.L., Yen, C., Lan, X.J., Yang, W.Y. 1997. Chromosome location of a new paring promoter in natural populations of common wheat. Southwest China J. Agric. Sci. 10:10–15.Google Scholar
  13. Liu, D.C., Yen, C., Yang, J.L., Luo, M.C., Yang, W.Y. 1999. Evaluation of crosses of common wheat cv. Kaixianluohanmai with alien species. Acta Agron. Sin. 25:777–781.Google Scholar
  14. Liu, D.C., Yang, Z.J., Zheng, Y.L., Lan, X.J., Wei, Y.M., Zhou, Y.H. 2001. A new wheat line, TKL1, derived from genetic transferring Aegilops variabilis into wheat carrying recessive Ph genes. Prospects of Wheat Genetics and Breeding for the 21 st Century-Paper Collection of Intern. Wheat Genet. and Breed. Symp., Zhengzhou, China. Chinese Agricultural Press, Beijing, pp. 251–254.Google Scholar
  15. Liu, D.C., Zheng, Y.L., Yan, Z.H., Zhou, Y.H., Wei, Y.M., Lan, X.J. 2003. Combination of homoeologous pairing gene phKL and Ph2 -deficiency in common wheat and its meiotic behaviors in hybrids with alien species. Acta Bot. Sin. 45:1121–1128.Google Scholar
  16. Luo, M.C., Yen, C., Yang, J.L. 1989. The crossability of landraces of common wheat in Sichuan with Aegilops tauschii and rye. J. Sichuan Agric. Univ. 7:77–81.Google Scholar
  17. Luo, M.C., Yang, Z.L., Yen, C., Yang, J.L. 1992. The cytogenetic investigation on F 1 hybrid of Chinese wheat landraces. In: Ren, Z.L., Peng, J.H. (eds), Exploration of Crop Breeding. Sichuan Science and Technology Press, Chengdu, pp. 169–176.Google Scholar
  18. Ma, R., Zheng, D.S., Fan, L. 1999. The possibility of ph genes existing spontaneously in common wheat. Acta Agron. Sin. 25:99–104.Google Scholar
  19. McGuire, P.E., Dvorak, J. 1982. Genetic regulation of heterogenetic chromosome pairing in polyploidy species of the genus Triticum sensu latum. Can. J. Genet. Cytol. 24:57–82.CrossRefGoogle Scholar
  20. Miller, T.E., Reader, S.M., Shaw, P.J., Moore, G. 1998. Towards an understanding of the biological action of the Ph1 locus in wheat. In: Slinkard, A.E. (ed.), Proc. 9 th Intern. Wheat Genet. Symp., Vol. 1. University Extension Press, Saskatoon, pp. 17–19.Google Scholar
  21. Mujeeb-Kazi, A., Roldan, S., Suh, D.Y. 1987. Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species. Genome 29:537–553.CrossRefGoogle Scholar
  22. Riley, R., Chapman, V. 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715.CrossRefGoogle Scholar
  23. Riley, R., Chapman, V. 1967. The inheritance in wheat of crossability with rye. Genet. Res. Cambridge 9:259–267.CrossRefGoogle Scholar
  24. Rong, T.Z., Li, W.C. 2001. Field experiment and analysis of statistics. Chengdu: Sichuan University Press. 2:70–72.Google Scholar
  25. Sears, E.R. 1976. Genetic control of chromosome pairing in wheat. Ann. Rev. Genet. 10:31–51.CrossRefGoogle Scholar
  26. Sears, E.R. 1977. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 19:585–593.CrossRefGoogle Scholar
  27. Sears, E.R. 1982. A wheat mutant conditioning an intermediate level of homoeologous pairing. Can. J. Genet. Cytol. 24:715–719.CrossRefGoogle Scholar
  28. Sears, E.R., Miller, T.E. 1985. The history of Chinese Spring wheat. Cereal Res. Comm. 13:261–263.Google Scholar
  29. Sun, G.L., Yen, C. 1994. The ineffectiveness of the ph1b gene on chromosome association in the F 1 hybrid, Triticum aestivum × Psathyrostachys huashanica. Wheat Inf. Serv. 79:28–32.Google Scholar
  30. Sun, G.L., Yen, C., Yang, J.L. 1992. Production and cytogenetic study of intergeneric hybrid between Triticum aestivum and Psathyrostachys species. Acta Genet. Sin. 19:205–210.Google Scholar
  31. Wall, A.M., Riley, R., Chapman, V. 1971. Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet. Res. 18:311–328.CrossRefGoogle Scholar
  32. Wang, M.N., Shang, H.S. 2000. Evaluation of resistance in Psathrostachys huashanica to wheat take-all fungus. Acta Univ. Agric. Borial-Occident 28:69–71.Google Scholar
  33. Xiang, Z.G., Liu, D.C., Zheng, Y.L., Zhang, L.Q., Yan, Z.H. 2005. The effect of phKL gene on homoeologous pairing of wheat-alien hybrids is situated between gene mutants of Ph1 and Ph2. Hereditas (Beijing) 27:935–940.Google Scholar
  34. Yan, Y., Liu, D.J. 1987. Production and cytogenetic study of intergeneric hybrid between Triticum aestivum and Roegneria ciliaris. Scientia Agric. Sin. 20:17–21.Google Scholar
  35. Zheng, D.S., Ma, R., Liu, S.C., Song, C.H. 2000. Sakyukomogi: a valuable wheat germplasm for distant hybridization. Chin. J. Plant Genet. Resour. 1:38–41.Google Scholar
  36. Zheng, Y.L., Luo, M.C., Yen, C., Yang, J.L. 1992. Chromosome location of a new crossability gene in common wheat. Wheat Inf. Serv. 75:36–40.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

Authors and Affiliations

  • H. Y. Kang
    • 1
    • 2
  • H. Q. Zhang
    • 1
    • 2
  • Y. Wang
    • 1
  • Y. Jiang
    • 1
  • H. J. Yuan
    • 1
  • Y. H. Zhou
    • 1
    • 2
    Email author
  1. 1.Triticeae Research InstituteSichuan Agricultural UniversityDujiangyanChina
  2. 2.Key Laboratory of Crop Genetic Resources and Improvement, Ministry of EducationSichuan Agricultural UniversityYaanChina

Personalised recommendations