Advertisement

Cereal Research Communications

, Volume 36, Issue 3, pp 417–427 | Cite as

The Crossability of Triticum turgidum with Aegilops tauschii

  • L. Q. Zhang
  • Z. H. Yan
  • S. F. Dai
  • Q. J. Chen
  • Z. W. Yuan
  • Y. L. Zheng
  • D. C. LiuEmail author
Article

Abstract

Two experiments to investigate the crossability of Triticum turgidum with Aegilops tauschii are described. In the first experiment, 372 wide hybridization combinations were done by crossing 196 T. turgidum lines belonging to seven subspecies with 13 Ae. tauschii accessions. Without embryo rescue and hormone treatment, from the 66220 florets pollinated, 3713 seeds were obtained, with a mean crossability percentages of 5.61% which ranged from 0 to 75%. A lot of hybrid seeds could germinate and produce plants. Out of 372 combinations, 73.12% showed a very low crossability less than 5%, 23.39% showed the crossability of 5–30%, 2.69% showed the crossability of 30–50%, 0.81% showed high crossability more than 50%, respectively. Among the seven T. turgidum subspecies, there were significant differences in crossability. The ssp. dicoccoides and dicoccon showed the highest crossability, while polonicum the lowest. All the crossability percentages more than 30% were obtained from the crossing of ssp. dicoccoides or dicoccon with Ae. tauschii. In the second experiment, the genetics of crossability was investigated using T. turgidum ssp. durum cultivar Langdon and the D-genome disomic substitution lines of Langdon. Compared with the control Langdon, lines 7D(7A) and 4D(4B) showed higher crossability, which suggested that chromosomes 7A and 4B of tetraploid wheat cv. Langdon carried dominant alleles inhibiting crossability with Ae. tauschii. The relationships of present results with previously reported crossability genes of wheat are discussed.

Keywords

Aegilops tauschii aneuploid analysis crossability Triticum turgidum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Falk, D.E., Kasha, M. 1981. Comparison of the crossability of rye (Secale cereale) and Hordeum bulbosum onto wheat (Triticum aestivum). Can. J. Genet. Cytol. 23:81–88.CrossRefGoogle Scholar
  2. Fedak, G., Jui, Y. 1982. Chromosomes of Chinese Spring wheat carrying genes for crossability with Betzes barley. Can. J. Genet. Cytol. 24:227–233.CrossRefGoogle Scholar
  3. Fernandes, M.I.B. de, Zanatta, A.C.A., Prestes, A.M., Caetano, V. da R., Barcellos, A.L., Angra, D.C., Pandolfi, V. 2000. Cytogenetics and immature embryo culture at Embrapa Trigo breeding program: transfer of disease resistance from related species by artificial resynthesis of hexaploid wheat (Triticum aestivum L. em Thell). Genet. Mol. Biol. 23:1051–1062.CrossRefGoogle Scholar
  4. Feldman, M. 2001. The origin of cultivated wheat. In: Bonjean, A.P., Angus, W.J. (eds), The World Wheat Book. Lavoisier Publishing, Paris, pp. 1–56.Google Scholar
  5. Genç, I., Özkan, H., Yagbasanlar, T. 1996. Crossability of D-genome chromosomes substitution lines of durum wheat (Triticum turgidum ssp. turgidum concv. durum) with Secale cereale and Aegilops squarrosa. Wheat Inf. Serv. 83:1–6.Google Scholar
  6. Inagaki, M.N., Pfeiffer, W.H., Mergoum, M., Mujeeb-kazi, A. 1998. Variation of the crossability of durum wheat with maize. Euphytica 104:17–23.CrossRefGoogle Scholar
  7. Joppa, L.R., Williams, N.D. 1988. Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30:222–228.CrossRefGoogle Scholar
  8. Kihara, H. 1944. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric. Hortic. (Tokyo) 19:889–890.Google Scholar
  9. Kihara, H., Lilienfeld, F. 1949. A new synthesized 6x-wheat. Hereditas (suppl): 307–319.Google Scholar
  10. Koba, T., Shimada, T. 1993. Crossability of common wheat with Aegilops squarrosa. Wheat Inf. Serv. 77:7–12.Google Scholar
  11. Krowlow, K.D. 1970. Untersuchungen über die Kreuzbarkeit zwischen Weizen und Roggen. Z. Pflanzenzücht 64:44–72.Google Scholar
  12. Lein, A. 1943. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. I. Ind. Abst. Vererb. Lehre 81:28–61.Google Scholar
  13. Liu, D.C., Lan, X.J., Yang, Z.J., Zheng, Y.L., Wei, Y.M., Zhou, Y.H. 2002. A unique Aegilops tauschii genotype needless to embryo rescue in cross with wheat. Acta Bot. Sin. 44:508–613.Google Scholar
  14. Liu, D.C., Yen, C., Yang, J.L., Lan, X.J., Zheng, Y.L. 1998. The chromosome distribution of crossability gene in durum wheat cv. Langdon. Wheat Inf. Serv. 87:1–4.Google Scholar
  15. Liu, D.C., Yen, C., Yang, J.L., Zheng, Y.L., Lan, X.J. 1999. The chromosomal distribution of crossability genes in tetraploid wheat Triticum turgidum L. cv. Ailanmai native to Sichuan, China. Euphytica 108:79–82.CrossRefGoogle Scholar
  16. Luo, M.C., Yen, C., Yang, J.L. 1989. The crossability of landraces of common wheat in Sichuan with Aegilops tauschii and rye. J. Sichuan Agric. Univ. 7:77–81.Google Scholar
  17. Matsuoka, Y., Nasuda, S. 2004. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F 1 hybrid with Aegilops tauschii Coss. Theor. Appl. Genet. 109:1710–1717.CrossRefGoogle Scholar
  18. Matsuoka, Y., Takumi, S., Kawahara, T. 2007. Natural variation for fertile triploid F 1 hybrid formation in allohexaploid wheat speciation. Theor. Appl. Genet. 115:509–518.CrossRefGoogle Scholar
  19. McFadden, E.S., Sears, E.R. 1944. The artificial synthesis of Triticum spleta. Rec. Genet. Soc. Am. 13:26–27.Google Scholar
  20. Mujeeb-Kazi, A., Rosas, V., Roldan, S. 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. × T. tauschii; 2 n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet. Resour. Crop Evol. 43:129–134.CrossRefGoogle Scholar
  21. O’Donoughue, S.L., Bennett, M.D. 1994. Comparative responses of tetraploid wheats pollinated with Zea mays L. and Hordeum bulbosum L. Theor. Appl. Genet. 87:673–680.CrossRefGoogle Scholar
  22. Ogbonnaya, F.C., Halloran, G.M., Lagudah, E.S. 2005. D genome of wheat — 60 years on from Kihara, Sears and McFadden. In: Tsunewaki, K. (ed.), Frontiers of Wheat Bioscience. Kihara memorial foundation for the advancement of life sciences, Yokohama, Japan, pp. 205–220.Google Scholar
  23. Peng, Z.S., Liu, D.C., Yen, C., Yang, J.L. 1998. Crossability of tetraploid wheat landraces native to Sichuan, Shaanxi, Gansu and Xinjiang, China with rye. Genet. Resour. Crop. Ev. 44:1–6.Google Scholar
  24. Reif, J.C., Zhang, P., Dreisigacker, S., Warburton, M.L., van Ginkel, M., Hoisington, D., Bohn, M., Melchinger, A.E. 2005. Wheat genetic diversity trends during domestication and breeding. Theor. Appl. Genet. 110:859–864.CrossRefGoogle Scholar
  25. Riley, R., Chapman, V. 1967. The inheritance in wheat of crossability with rye. Genet. Res. 9:259–267.CrossRefGoogle Scholar
  26. Sharma, H.C. 1995. How wide can a wide cross be? Euphytica 82:43–46.CrossRefGoogle Scholar
  27. Sitch, L.A., Snape, J.W. 1986. Allelic variations at the crossability loci in wheat (Triticum aestivum). Wheat Inf. Serv. 63:11–15.Google Scholar
  28. Snape, J.W., Chapman, V., Moss, J., Blanchard, C.E., Miller, T.E. 1979. The crossability of wheat varieties with Hordeum bulbosum. Heredity 42:291–298.CrossRefGoogle Scholar
  29. Thomas, J.B., Kaltsikes, P.J., Anderson, G. 1980. Relation between wheat-rye crossability and seed set of common wheat after pollination with other species in the Hordeae. Euphytica 30:121–127.CrossRefGoogle Scholar
  30. Tixier, M.H., Sourdille, P., Charmet, G., Gay, G., Jaby, C., Cadalen, T., Bernard, S., Nicolas, P., Bernard, M. 1998. Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor. Appl. Genet. 97:1076–1082.CrossRefGoogle Scholar
  31. Van Ginkel, M., Ogbonnaya, F. 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Research 104:86–94.CrossRefGoogle Scholar
  32. Van Slageren, M.W. 1994. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University, Wageningen, pp. 88–94.Google Scholar
  33. Xu, S.J., Dong, Y.S. 1992. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome 35:379–384.CrossRefGoogle Scholar
  34. Xu, S.J., Joppa, L.R. 1995. Mechanisms and inheritance of first division restitution in hybrids of wheat, rye, and Aegilops squarrosa. Genome 38:607–615.CrossRefGoogle Scholar
  35. Xu, S.J., Joppa, L.R. 2000. First division restitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa. Plant Breed. 119:233–241.CrossRefGoogle Scholar
  36. Zhang, L.Q., Yen, Y., Zheng, Y.L., Liu, D.C. 2007. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex. Plant Reprod. 20:159–166.CrossRefGoogle Scholar
  37. Zheng, Y.L., Luo, M.C., Yen, C., Yang, J.L. 1992. Chromosome location of a new crossability gene in common wheat. Wheat Infor. Serv. 75:36–40.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

Authors and Affiliations

  • L. Q. Zhang
    • 1
    • 2
  • Z. H. Yan
    • 1
    • 2
  • S. F. Dai
    • 1
    • 2
  • Q. J. Chen
    • 1
    • 2
  • Z. W. Yuan
    • 1
    • 2
  • Y. L. Zheng
    • 1
    • 2
  • D. C. Liu
    • 1
    • 2
    Email author
  1. 1.Triticeae Research InstituteSichuan Agricultural UniversityDujiangyan cityChina
  2. 2.Key Laboratory of Crop Genetic Resources and Improvement, Ministry of EducationSichuan Agricultural UniversityYaan, SichuanChina

Personalised recommendations